A regularity criterion for the 3D incompressible magneto-hydrodynamics equations

被引:16
|
作者
Xu, Fuyi [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MHD equations; Regularity criterion; Littlewood-Paley decomposition; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; MHD EQUATIONS; GLOBAL REGULARITY; VORTICITY;
D O I
10.1016/j.jmaa.2017.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is dedicated to study of the regularity criterion for weak solutions to the 3D incompressible MHD equations. Employing the Littlewood Paley decomposition, we show that if (del) over bar(u) over bar = (partial derivative(1)(u) over bar, partial derivative(2)(u) over bar) is an element of L-partial derivative 1 ([0, T); B-r1,2r/3(0) (R-3)), 2/r(1) + 3/r(1) = 2,3/2 <r(1) <= infinity and <(del)over bar>(b) over bar = (partial derivative(1)(b) over bar, partial derivative(2)(b) over bar) is an element of L-partial derivative 1 ([0, T); B-r1,2r/3(0) (R-3)), 2/r(1) + 3/r(1) = 2,3/2 <r(1) <= infinity, then the solutions to the MHD actually is smooth on (0,T). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:634 / 644
页数:11
相关论文
共 50 条
  • [1] A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Xu, Fuyi
    Li, Xinliang
    Cui, Yujun
    Wu, Yonghong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [2] A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Fuyi Xu
    Xinliang Li
    Yujun Cui
    Yonghong Wu
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [3] On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) : 919 - 930
  • [4] On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations
    Qionglei Chen
    Changxing Miao
    Zhifei Zhang
    [J]. Communications in Mathematical Physics, 2008, 284
  • [5] ENERGY CONSERVATION AND REGULARITY FOR THE 3D MAGNETO-HYDRODYNAMICS EQUATIONS
    Tan, Wenke
    Wu, Fan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (11): : 5487 - 5508
  • [6] Limiting case for the regularity criterion to the 3-D Magneto-hydrodynamics equations
    Wang, Wendong
    Zhang, Zhifei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5751 - 5762
  • [7] Regularity criteria to the axisymmetric incompressible Magneto-hydrodynamics equations
    Jiu, Quansen
    Liu, Jitao
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 15 (02) : 109 - 126
  • [8] The 3D incompressible Hall magneto-hydrodynamics equations with partial hyperdissipation
    Yuan, Baoquan
    Li, Chaoying
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 359 : 308 - 332
  • [9] GLOBAL REGULARITY FOR 3D GENERALIZED HALL MAGNETO-HYDRODYNAMICS EQUATIONS
    Yuan, Baoquan
    Li, Chaoying
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1143 - 1158
  • [10] Global regularity for 3D magneto-hydrodynamics equations with only horizontal dissipation
    Wang, Yutong
    Wang, Weike
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 149 - 175