Unified approach for multiple sclerosis lesion segmentation on brain MRI

被引:99
|
作者
Sajja, BR
Datta, S
He, RJ
Mehta, M
Gupta, RK
Wolinsky, JS
Narayana, PA
机构
[1] Univ Texas, Sch Med, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[2] Sanjay Gandhi Postgrad Inst Med Sci, Dept Radiodiagnosis, Lucknow 226014, Uttar Pradesh, India
[3] Univ Texas, Sch Med, Dept Neurol, Houston, TX 77030 USA
关键词
segmentation; feature classification; multiple sclerosis; expectation maximization; hidden Markov random field; MRI;
D O I
10.1007/s10439-005-9009-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [1] Unified Approach for Multiple Sclerosis Lesion Segmentation on Brain MRI
    Balasrinivasa Rao Sajja
    Sushmita Datta
    Renjie He
    Meghana Mehta
    Rakesh K. Gupta
    Jerry S. Wolinsky
    Ponnada A. Narayana
    Annals of Biomedical Engineering, 2006, 34 : 142 - 151
  • [2] A unified approach for lesion segmentation on MRI of multiple sclerosis
    Sajja, BR
    Datta, S
    He, R
    Narayana, PA
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1778 - 1781
  • [3] An efficient algorithm for multiple sclerosis lesion segmentation from brain MRI
    Cárdenes, R
    Warfield, SK
    Macías, EM
    Santana, JA
    Ruiz-Alzola, J
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2003, 2003, 2809 : 542 - 551
  • [4] Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis
    De Rosa, Alessandro Pasquale
    Benedetto, Marco
    Tagliaferri, Stefano
    Bardozzo, Francesco
    D'Ambrosio, Alessandro
    Bisecco, Alvino
    Gallo, Antonio
    Cirillo, Mario
    Tagliaferri, Roberto
    Esposito, Fabrizio
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI
    Pachai, C
    Zhu, YM
    Grimaud, J
    Hermier, M
    Dromigny-Badin, A
    Boudraa, A
    Gimenez, G
    Confavreux, C
    Froment, JC
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1998, 22 (05) : 399 - 408
  • [6] A novel multi-atlas and multi-channel (MAMC) approach for multiple sclerosis lesion segmentation in brain MRI
    Wang, Jingjing
    Hu, Changjun
    Xu, Huaqiang
    Leng, Yan
    Zhang, Liren
    Zhao, Yuefeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (05) : 1019 - 1027
  • [7] A novel multi-atlas and multi-channel (MAMC) approach for multiple sclerosis lesion segmentation in brain MRI
    Jingjing Wang
    Changjun Hu
    Huaqiang Xu
    Yan Leng
    Liren Zhang
    Yuefeng Zhao
    Signal, Image and Video Processing, 2019, 13 : 1019 - 1027
  • [8] A Novel Multi-Atlas and Multi-Channel (MAMC) Approach for Multiple Sclerosis Lesion Segmentation in Brain MRI
    Hu, Changjun
    Song, Liansong
    Liu, Meiru
    Wang, Jingjing
    Zhang, Liren
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 106 - 112
  • [9] Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI
    Wu, Ying
    Warfield, Simon K.
    Tan, I. Leng
    Wells, William M., III
    Meier, Dominik S.
    van Schijndel, Ronald A.
    Barkhof, Frederik
    Guttmann, Charles R. G.
    NEUROIMAGE, 2006, 32 (03) : 1205 - 1215
  • [10] SCANNER INVARIANT MULTIPLE SCLEROSIS LESION SEGMENTATION FROM MRI
    Aslani, Shahab
    Murino, Vittorio
    Dayan, Michael
    Tam, Roger
    Sona, Diego
    Hamarneh, Ghassan
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 781 - 785