Boundary value problems for semilinear differential inclusions of fractional order in a Banach space

被引:24
|
作者
Kamenskii, Mikhail [1 ,2 ]
Obukhovskii, Valeri [2 ,3 ]
Petrosyan, Garik [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Voronezh State Univ, Fac Math, Voronezh, Russia
[2] RUDN Univ, Dept Nonlinear Anal & Optimizat, Moscow, Russia
[3] Voronezh State Pedag Univ, Fac Math & Phys, Voronezh, Russia
[4] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
关键词
Differential inclusion; fractional derivative; solution set; R-delta-set; translation multioperator; measure of noncompactness; condensing multimap; fixed point; periodic problem; anti-periodic problem; EXISTENCE;
D O I
10.1080/00036811.2016.1277583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we show that the solution set of a fractional order semilinear differential inclusion in a Banach space has the topological structure of an R-delta-set. This result allows to apply a fixed point result for condensing multimaps to the translation multioperator along the trajectories of such inclusion and to prove the existence of solutions satisfying periodic and anti-periodic boundary value conditions. An example concerning with a fractional order feedback control system is presented.
引用
收藏
页码:571 / 591
页数:21
相关论文
共 50 条
  • [31] BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Aleroev, T. S.
    Aleroeva, H. T.
    Nie, Ning-Ming
    Tang, Yi-Fa
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2010, 49 : 21 - 82
  • [32] BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Aleroev, T. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 41 - 55
  • [33] BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL MULTIPOINT BOUNDARY CONDITIONS
    Guerraiche, Nassim
    Hamani, Samira
    Henderson, Johnny
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2059 - 2072
  • [34] Boundary-value problems for differential equations in a Banach space
    Boichuk, O. A.
    Panasenko, E. V.
    NONLINEAR OSCILLATIONS, 2009, 12 (01): : 15 - 18
  • [35] Nonlinear Boundary Value Problems for Second Order Differential Inclusions
    Sophia Th. Kyritsi
    Nikolaos Matzakos
    Nikolaos Papageorgiou
    Czechoslovak Mathematical Journal, 2005, 55 : 545 - 579
  • [36] ON A BOUNDARY VALUE PROBLEM FOR HALE TYPE FRACTIONAL FUNCTIONAL-DIFFERENTIAL INCLUSIONS WITH CAUSAL MULTIOPERATORS IN A BANACH SPACE
    Obukhovskii, Valeri
    Petrosyan, Garik
    Soroka, Maria
    Wen, Ching-Feng
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (06): : 957 - 970
  • [37] Nonlinear boundary value problems for second order differential inclusions
    Kyritsi, ST
    Matzakos, N
    Papageorgiou, NS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (03) : 545 - 579
  • [38] Nonlinear boundary value problems for second order differential inclusions
    Zhang, Qinghua
    Li, Gang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3390 - 3406
  • [39] Boundary Value Problems for Impulsive Fractional Differential Equations in Banach Spaces
    Yang, Shuai
    Zhang, Shuqin
    FILOMAT, 2017, 31 (18) : 5603 - 5616
  • [40] EXISTENCE RESULTS FOR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL HYBRID DIFFERENTIAL INCLUSIONS
    Dhage, Bapurao C.
    Ntouyas, Sotiris K.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 44 (01) : 229 - 238