Boundary value problems for semilinear differential inclusions of fractional order in a Banach space

被引:24
|
作者
Kamenskii, Mikhail [1 ,2 ]
Obukhovskii, Valeri [2 ,3 ]
Petrosyan, Garik [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Voronezh State Univ, Fac Math, Voronezh, Russia
[2] RUDN Univ, Dept Nonlinear Anal & Optimizat, Moscow, Russia
[3] Voronezh State Pedag Univ, Fac Math & Phys, Voronezh, Russia
[4] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
关键词
Differential inclusion; fractional derivative; solution set; R-delta-set; translation multioperator; measure of noncompactness; condensing multimap; fixed point; periodic problem; anti-periodic problem; EXISTENCE;
D O I
10.1080/00036811.2016.1277583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we show that the solution set of a fractional order semilinear differential inclusion in a Banach space has the topological structure of an R-delta-set. This result allows to apply a fixed point result for condensing multimaps to the translation multioperator along the trajectories of such inclusion and to prove the existence of solutions satisfying periodic and anti-periodic boundary value conditions. An example concerning with a fractional order feedback control system is presented.
引用
收藏
页码:571 / 591
页数:21
相关论文
共 50 条