HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders

被引:40
|
作者
Gautier, Emmanuel L. [1 ]
Westerterp, Marit [2 ,3 ]
Bhagwat, Neha [4 ,5 ]
Cremers, Serge [2 ]
Shih, Alan [4 ,5 ]
Abdel-Wahab, Omar [4 ,5 ]
Luetjohann, Dieter [6 ]
Randolph, Gwendalyn J. [1 ]
Levine, Ross L. [4 ,5 ]
Tall, Alan R. [2 ]
Yvan-Charvet, Laurent [2 ,7 ]
机构
[1] Washington Univ, Dept Pathol & Immunol, St Louis Sch Med, St Louis, MO 63110 USA
[2] Columbia Univ, Dept Med, Div Mol Med, New York, NY 10032 USA
[3] Univ Amsterdam, Acad Med Ctr, Dept Med Biochem, NL-1105 Amsterdam, Netherlands
[4] Mem Sloan Kettering Canc Ctr, Human Oncol & Pathogenesis Program, New York, NY 10065 USA
[5] Mem Sloan Kettering Canc Ctr, Leukemia Serv, Dept Med, New York, NY 10065 USA
[6] Univ Clin Bonn, Inst Clin Chem & Clin Pharmacol, D-53127 Bonn, Germany
[7] Ctr Mediterraneen Med Mol C3M, Inst Natl Sante & Rech Med U1065, F-06204 Nice, France
来源
JOURNAL OF EXPERIMENTAL MEDICINE | 2013年 / 210卷 / 02期
基金
美国国家卫生研究院;
关键词
HEMATOPOIETIC STEM; GLUCOSE-UPTAKE; AEROBIC GLYCOLYSIS; CANCER; MACROPHAGES; CELLS; MYELOFIBROSIS; ACCUMULATION; TRANSPORTERS; THERAPIES;
D O I
10.1084/jem.20121357
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
A high metabolic rate in myeloproliferative disorders is a common complication of neoplasms, but the underlying mechanisms are incompletely understood. Using three different mouse models of myeloproliferative disorders, including mice with defective cholesterol efflux pathways and two models based on expression of human leukemia disease alleles, we uncovered a mechanism by which proliferating and inflammatory myeloid cells take up and oxidize glucose during the feeding period, contributing to energy dissipation and subsequent loss of adipose mass. In vivo, lentiviral inhibition of Glut1 by shRNA prevented myeloproliferation and adipose tissue loss in mice with defective cholesterol efflux pathway in leukocytes. Thus, Glut1 was necessary to sustain proliferation and potentially divert glucose from fat storage. We also showed that overexpression of the human ApoA-I transgene to raise high-density lipoprotein (HDL) levels decreased Glut1 expression, dampened myeloproliferation, and prevented fat loss. These experiments suggest that inhibition of Glut-1 and HDL cholesterol-raising therapies could provide novel therapeutic approaches to treat the energy imbalance observed in myeloproliferative disorders.
引用
收藏
页码:339 / 353
页数:15
相关论文
共 50 条
  • [21] Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity
    Thompson, Alayna M. George
    Iancu, Cristina V.
    Thi Thanh Hanh Nguyen
    Kim, Doman
    Choe, Jun-yong
    SCIENTIFIC REPORTS, 2015, 5
  • [22] Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity
    Alayna M. George Thompson
    Cristina V. Iancu
    Thi Thanh Hanh Nguyen
    Doman Kim
    Jun-yong Choe
    Scientific Reports, 5
  • [23] On the oligomeric state of the red blood cell glucose transporter GLUT1
    Zuo, SS
    Hellman, U
    Lundahl, P
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2003, 1618 (01): : 8 - 16
  • [24] Vav1-HIF1α-Glut1, a novel axis to initiate neurodegenerative disorders
    Hong, Jaewoo
    PHYSIOLOGY, 2023, 38
  • [25] Triheptanoin dramatically reduces the frequency of paroxysmal movement disorders in GLUT1 deficiency
    Mochel, Fanny
    Hainque, Elodie
    Gras, Domitille
    Adanyeguh, Isaac
    Roze, Emmanuel
    NEUROLOGY, 2015, 85 (04) : E47 - E48
  • [26] Triheptanoin dramatically reduces the frequency of paroxysmal Movement Disorders in GLUT1 deficiency
    Mochel, F.
    Hainque, E.
    Gras, D.
    Adanyeguh, I.
    Caillet, S.
    Rinaldi, D.
    Heron, B.
    Kaphan, E.
    Hogrel, J. Y.
    Servais, L.
    Roze, E.
    MOVEMENT DISORDERS, 2015, 30 : S479 - S479
  • [27] Gene Therapy for Glut1-Deficient Mouse Using AAV Vector with the Human Intrinsic Glut1 Promoter
    Nakamura, Sachie
    Osaka, Hitoshi
    Muramatsu, Shin-ichi
    Takino, Naomi
    Ito, Mika
    Jimbo, Eriko F.
    Shimazaki, Kuniko
    Onaka, Tatsushi
    Ohtsuki, Sumio
    Terasaki, Tetsuya
    Yamagata, Takanori
    MOLECULAR THERAPY, 2018, 26 (05) : 130 - 131
  • [28] Movement Disorders in GLUT1 Deficiency Syndrome Respond to the Modified Atkins Diet
    Leen, Wilhelmina G.
    Mewasingh, Leena
    Verbeek, Marcel M.
    Kamsteeg, Erik-Jan
    van de Warrenburg, Bart P.
    Willemsen, Michel A.
    MOVEMENT DISORDERS, 2013, 28 (10) : 1439 - 1442
  • [29] Deficits in brain energy metabolism in a mouse model for Glut1 Deficiency Syndrome
    Burlet-Godinot, S.
    Soya, M.
    Carrard, A.
    Tang, M.
    Monani, U.
    De Vivo, D.
    Martin, J. -L.
    Magistretti, P.
    GLIA, 2021, 69 : E226 - E227
  • [30] Histochemical demonstration of a monocarboxylate transporter in the mouse perineurium with special reference to GLUT1
    Takebe, Kumiko
    Nio-Kobayashi, Junko
    Takahashi-Iwanaga, Hiromi
    Iwanaga, Toshihiko
    BIOMEDICAL RESEARCH-TOKYO, 2008, 29 (06): : 297 - 306