Control of 1D parabolic PDEs with Volterra nonlinearities, Part II: Analysis

被引:56
|
作者
Vazquez, Rafael [2 ]
Krstic, Miroslav [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Seville, Dept Ingn Aeroespacial, Seville 41092, Spain
关键词
Distributed parameter systems; Stabilization; Nonlinear control; Feedback linearization; Partial differential equations; Lyapunov function; Boundary conditions;
D O I
10.1016/j.automatica.2008.04.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a class of stabilizing boundary controllers for nonlinear 1D parabolic PDEs introduced in a companion paper, we derive bounds for the gain kernels of our nonlinear Volterra controllers, Prove the convergence of the series in the feedback laws, and establish the stability properties of the closed-loop system. We show that the state transformation is at least locally invertible and include an explicit construction for computing the inverse of the transformation. Using the inverse, we show L-2 and H-1 exponential stability and explicitly construct the exponentially decaying closed-loop solutions. We then illustrate the theoretical results on an analytically tractable example. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2791 / 2803
页数:13
相关论文
共 50 条
  • [31] Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs
    Katz, Rami
    Fridman, Emilia
    AUTOMATICA, 2020, 122
  • [32] Error control Gaussian collocation software for boundary value ODEs and 1D time-dependent PDEs
    Mark Adams
    Connor Tannahill
    Paul Muir
    Numerical Algorithms, 2019, 81 : 1505 - 1519
  • [33] Error control Gaussian collocation software for boundary value ODEs and 1D time-dependent PDEs
    Adams, Mark
    Tannahill, Connor
    Muir, Paul
    NUMERICAL ALGORITHMS, 2019, 81 (04) : 1505 - 1519
  • [34] ISS IN DIFFERENT NORMS FOR 1-D PARABOLIC PDES WITH BOUNDARY DISTURBANCES
    Karafyllis, Iasson
    Krstic, Miroslav
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (03) : 1716 - 1751
  • [35] A greedy MLPG method for identifying a control parameter in 2D parabolic PDEs
    Takhtabnoos, Fariba
    Shirzadi, Ahmad
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (11) : 1676 - 1694
  • [36] Rescaling nonlinear noise for 1D stochastic parabolic equations
    Goldys, Beniamin
    Neklyudov, Misha
    STOCHASTICS AND DYNAMICS, 2020, 20 (04)
  • [37] Adaptive boundary control for unstable parabolic PDEs - Part III: Output feedback examples with swapping identifiers
    Smyshlyaev, Andrey
    Krstic, Miroslav
    AUTOMATICA, 2007, 43 (09) : 1557 - 1564
  • [38] On 1D, N=4 supersymmetric SYK-type models. Part II
    Gates, S. James, Jr.
    Hu, Yangrui
    Mak, S-N Hazel
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (03):
  • [39] Long Time Solutions for 1D Cubic Dispersive Equations, Part II: The Focusing Case
    Ifrim, Mihaela
    Tataru, Daniel
    VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (03) : 597 - 614
  • [40] High order spline collocation methods for solving 1-D parabolic PDEs
    Sallam, S.
    Anwar, M. Naim
    Abdel-Aziz, M. R.
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2009, 36 (2A): : 1 - 19