Control of 1D parabolic PDEs with Volterra nonlinearities, Part II: Analysis

被引:55
|
作者
Vazquez, Rafael [2 ]
Krstic, Miroslav [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Seville, Dept Ingn Aeroespacial, Seville 41092, Spain
关键词
Distributed parameter systems; Stabilization; Nonlinear control; Feedback linearization; Partial differential equations; Lyapunov function; Boundary conditions;
D O I
10.1016/j.automatica.2008.04.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a class of stabilizing boundary controllers for nonlinear 1D parabolic PDEs introduced in a companion paper, we derive bounds for the gain kernels of our nonlinear Volterra controllers, Prove the convergence of the series in the feedback laws, and establish the stability properties of the closed-loop system. We show that the state transformation is at least locally invertible and include an explicit construction for computing the inverse of the transformation. Using the inverse, we show L-2 and H-1 exponential stability and explicitly construct the exponentially decaying closed-loop solutions. We then illustrate the theoretical results on an analytically tractable example. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2791 / 2803
页数:13
相关论文
共 50 条
  • [1] Control of 1-D parabolic PDEs with Volterra nonlinearities, Part 1: Design
    Vazquez, Rafael
    Krstic, Miroslav
    AUTOMATICA, 2008, 44 (11) : 2778 - 2790
  • [2] Constructive method for boundary control of stochastic 1D parabolic PDEs
    Wang, Pengfei
    Katz, Rami
    Fridman, Emilia
    IFAC PAPERSONLINE, 2022, 55 (30): : 109 - 114
  • [3] A comparison of adaptive software for 1D parabolic PDEs
    Wang, R
    Keast, P
    Muir, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) : 127 - 150
  • [4] Constructive finite-dimensional boundary control of stochastic 1D parabolic PDEs
    Wang, Pengfei
    Katz, Rami
    Fridman, Emilia
    AUTOMATICA, 2023, 148
  • [5] B-spline Gaussian collocation software for 1D parabolic PDEs
    Muir, Paul H.
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 267 - 276
  • [6] Adaptive boundary control for unstable parabolic PDEs - Part 1: Lyapunov design
    Krstic, Miroslav
    Smyshlyaev, Andrey
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (07) : 1575 - 1591
  • [7] Adaptive boundary control for unstable parabolic PDEs - Part II: Estimation-based designs
    Smyshlyaev, Andrey
    Krstic, Miroslav
    AUTOMATICA, 2007, 43 (09) : 1543 - 1556
  • [8] Sampled-data finite-dimensional observer-based boundary control of 1D stochastic parabolic PDEs
    Wang, Pengfei
    Fridman, Emilia
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1045 - 1050
  • [9] SAMPLED-DATA FINITE-DIMENSIONAL OBSERVER-BASED CONTROL OF 1D STOCHASTIC PARABOLIC PDEs\ast
    Wang, Pengfei
    Fridman, Emilia
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (01) : 297 - 325
  • [10] Delayed finite-dimensional observer-based control of 1D parabolic PDEs via reduced-order LMIs
    Katz, Rami
    Fridman, Emilia
    Automatica, 2022, 142