The Role of Grain Size on Deformation of 316H Austenitic Stainless Steel

被引:0
|
作者
Mahalingam, S. [1 ]
Flewitt, P. E. J. [1 ,2 ]
Shterenlikht, A. [3 ]
机构
[1] Univ Bristol, Interface Anal Ctr, Bristol BS2 8BS, Avon, England
[2] Univ Bristol, Sch Phys, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Univ Bristol, Dept Mech Engn, Bristol BS2 8BS, Avon, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Austenitic stainless steel; grain size; deformation; FE analysis; three point bend; BEHAVIOR;
D O I
10.4028/www.scientific.net/KEM.525-526.201
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The polycrystalline high purity 316H austenitic stainless steel has been thermo-mechanically treated to produce material with two layers of grain size, one of coarser and the other of finer grains. Small three point bend specimens containing a notch positioned in either the coarser or finer layer have been tested at a constant strain rate and a temperature of -196 degrees C. The results are discussed with respect to the effect of grain size on the underlying deformation between the two layers of different grain size.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [41] The influence of constraint on creep crack growth in 316H stainless steel
    Bettinson, A
    Nikbin, K
    O'Dowd, NP
    Webster, GA
    STRUCTURAL INTEGRITY IN THE 21ST CENTURY: THE LIFETIME OF PLANT, STRUCTURES AND COMPONENTS: EVALUATION, DESIGN, EXTENSION AND MANAGEMENT, 2000, : 149 - 156
  • [42] Study of the Grain Size Distribution during Preheating Period Prior to the Hot Deformation in AISI 316L Austenitic Stainless Steel
    Rasti, J.
    PHYSICS OF METALS AND METALLOGRAPHY, 2019, 120 (06): : 584 - 592
  • [43] Study of the Grain Size Distribution during Preheating Period Prior to the Hot Deformation in AISI 316L Austenitic Stainless Steel
    J. Rasti
    Physics of Metals and Metallography, 2019, 120 : 584 - 592
  • [44] Exploring grain size influence on tensile behavior of 316 H austenitic stainless steel at high temperature: A phenomenological dislocation model
    Qi, Xueyan
    Zhao, Lei
    Xu, Lianyong
    Han, Yongdian
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [45] On Grain Boundary Engineering for a 316L Austenitic Stainless Steel
    Dolzhenko, Pavel
    Tikhonova, Marina
    Odnobokova, Marina
    Kaibyshev, Rustam
    Belyakov, Andrey
    METALS, 2022, 12 (12)
  • [46] Synergistic effects of impurities and sensitisation on intergranular corrosion and stress corrosion cracking in type 316H austenitic stainless steel
    McIntyre, P
    Younes, CM
    Chan, SW
    BRITISH CORROSION JOURNAL, 1996, 31 (02): : 133 - 137
  • [47] Ferrite formation and decomposition in 316H austenitic stainless steel electro slag remelting ingot for nuclear power applications
    Wang, Yang
    Chen, Chao
    Ren, Ruijie
    Xue, Zhixuan
    Wang, Haozheng
    Zhang, Yunzhe
    Wang, Junxian
    Wang, Jian
    Chen, Lei
    Mu, Wangzhong
    MATERIALS CHARACTERIZATION, 2024, 218
  • [48] Influence of nominal composition variation on phase evolution and creep life of Type 316H austenitic stainless steel components
    Martinez-Ubeda, Ana I.
    Griffiths, Ian
    Karunaratne, Mudith S. A.
    Flewitt, Peter E. J.
    Younes, Charles
    Scott, Tom
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 958 - 965
  • [49] Correction to: Transitional Behavior for Dynamic Recrystallization in Nuclear Grade 316H Stainless Steel during Hot Deformation
    Zhiguo Wang
    Fei Gao
    Weina Zhang
    Guangming Cao
    Zhenyu Liu
    Metallurgical and Materials Transactions A, 2022, 53 : 738 - 738
  • [50] Tensile deformation behavior of high manganese austenitic steel: The role of grain size
    Dini, G.
    Najafizadeh, A.
    Ueji, R.
    Monir-Vaghefi, S. M.
    MATERIALS & DESIGN, 2010, 31 (07) : 3395 - 3402