The Role of Grain Size on Deformation of 316H Austenitic Stainless Steel

被引:0
|
作者
Mahalingam, S. [1 ]
Flewitt, P. E. J. [1 ,2 ]
Shterenlikht, A. [3 ]
机构
[1] Univ Bristol, Interface Anal Ctr, Bristol BS2 8BS, Avon, England
[2] Univ Bristol, Sch Phys, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Univ Bristol, Dept Mech Engn, Bristol BS2 8BS, Avon, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Austenitic stainless steel; grain size; deformation; FE analysis; three point bend; BEHAVIOR;
D O I
10.4028/www.scientific.net/KEM.525-526.201
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The polycrystalline high purity 316H austenitic stainless steel has been thermo-mechanically treated to produce material with two layers of grain size, one of coarser and the other of finer grains. Small three point bend specimens containing a notch positioned in either the coarser or finer layer have been tested at a constant strain rate and a temperature of -196 degrees C. The results are discussed with respect to the effect of grain size on the underlying deformation between the two layers of different grain size.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [21] The role of pressure in carburisation: Crack dynamics in Type 316H austenitic stainless steel under CO2 environments
    Zimina, Mariia
    Warren, Alexander D.
    Coghlan, Lawrence
    Thomas, Peter J.
    Chevalier, Marc
    Flewitt, Peter E. J.
    Martin, Tomas L.
    JOURNAL OF NUCLEAR MATERIALS, 2025, 606
  • [22] EFFECT OF THERMO-MECHANICAL HISTORY ON REHEAT CRACKING IN 316H AUSTENITIC STAINLESS STEEL WELDMENTS
    Chen, Bo
    Spindler, Michael W.
    Smith, David J.
    Flewitt, Peter E. J.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 6, PTS A AND B, 2010, : 357 - 363
  • [23] Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel
    Warren, A. D.
    Griffiths, I. J.
    Flewitt, P. E. J.
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 6183 - 6197
  • [24] Effect of cryogenic temperatures on the mechanical behavior and deformation mechanism of AISI 316H stainless steel
    Li, Xiuru
    Wei, Zhaocheng
    Wang, Xiaoyu
    Yang, Longyun
    Hao, Xiaole
    Wang, Minjie
    Guo, Minglong
    Guo, Jiang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 3375 - 3386
  • [25] Initial Studies of Tellurium Embrittlement in 316H Stainless Steel
    Reyes, Lauryn K.
    Khan, Mohammad Umar Farooq
    Gordon, Ryan E.
    Raiman, Stephen S.
    NUCLEAR TECHNOLOGY, 2024,
  • [26] Effect of grain size in compression deformation on the microstructural evolution of an austenitic stainless steel
    Rehrl, Christian
    Kleber, Siegfried
    Renk, Oliver
    Pippan, Reinhard
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 540 : 55 - 62
  • [27] A UNIFIED ENGINEERING INELASTIC MODEL FOR 316H STAINLESS STEEL
    Phan, V. -T.
    Messner, M. C.
    Sham, T. -L.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 1, 2019,
  • [28] Corrosion of 316H stainless steel in flowing FLiNaK salt
    Raiman, Stephen S.
    Kurley, J. Matthew
    Sulejmanovic, Dino
    Willoughby, Adam
    Nelson, Scott
    Mao, Keyou
    Parish, Chad M.
    Greenwood, M. Scott
    Pint, Bruce A.
    JOURNAL OF NUCLEAR MATERIALS, 2022, 561
  • [29] Creep crack growth simulations in 316H stainless steel
    Yatomi, Masataka
    Davies, Catrin M.
    Nikbin, Kamran M.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (18) : 5140 - 5150
  • [30] An Investigation into Creep Cavity Development in 316H Stainless Steel
    Jazaeri, Hedieh
    Bouchard, P. John
    Hutchings, Michael T.
    Spindler, Mike W.
    Mamun, Abdullah A.
    Heenan, Richard K.
    METALS, 2019, 9 (03):