Variable bandwidth in nonparametric regression

被引:0
|
作者
Kim, WC
Park, BU [1 ]
Lee, YK
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151742, South Korea
[2] Kangweon Natl Univ, Dept Stat, Chunchon 200701, South Korea
关键词
kernel smoothing; regression function; internal estimator; rate of convergence; asymptotic distribution;
D O I
10.1080/10485259908832764
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of estimating a probability density function, use of a suitable variable bandwidth is known to improve the rate of convergence of the resulting kernel density estimator. In this paper we show that the same kind of improvement is possible in the regression setting. In particular, we find that the fast rate of convergence derived by Hall (1990), using a bandwidth variation method that depends on the underlying regression function, still holds when one uses an estimate of the regression function as a pilot.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条