Variable bandwidth in nonparametric regression

被引:0
|
作者
Kim, WC
Park, BU [1 ]
Lee, YK
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151742, South Korea
[2] Kangweon Natl Univ, Dept Stat, Chunchon 200701, South Korea
关键词
kernel smoothing; regression function; internal estimator; rate of convergence; asymptotic distribution;
D O I
10.1080/10485259908832764
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of estimating a probability density function, use of a suitable variable bandwidth is known to improve the rate of convergence of the resulting kernel density estimator. In this paper we show that the same kind of improvement is possible in the regression setting. In particular, we find that the fast rate of convergence derived by Hall (1990), using a bandwidth variation method that depends on the underlying regression function, still holds when one uses an estimate of the regression function as a pilot.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条
  • [21] SURE-Optimal Bandwidth Selection in Nonparametric Regression
    Sunder Ram Krishnan
    Chandra Sekhar Seelamantula
    [J]. Sampling Theory in Signal and Image Processing, 2012, 11 (2-3): : 133 - 163
  • [22] A plug-in bandwidth selector for nonparametric quantile regression
    Conde-Amboage, Mercedes
    Sanchez-Sellero, Cesar
    [J]. TEST, 2019, 28 (02) : 423 - 450
  • [23] Robust plug-in bandwidth estimators in nonparametric regression
    Boente, G
    Fraiman, R
    Meloche, J
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) : 109 - 142
  • [24] A plug-in bandwidth selector for nonparametric quantile regression
    Mercedes Conde-Amboage
    César Sánchez-Sellero
    [J]. TEST, 2019, 28 : 423 - 450
  • [25] Variable bandwidth kernel regression estimation
    Nakarmi, Janet
    Sang, Hailin
    Ge, Lin
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2021, 25 (25) : 55 - 86
  • [26] Nonparametric Estimation of Volatility Function with Variable Bandwidth Parameter
    Ye, Xuguo
    Ling, Nengxiang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (24) : 4525 - 4539
  • [27] Variable selection by stepwise slicing in nonparametric regression
    Kulasekera, KB
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 51 (04) : 327 - 336
  • [28] Adaptive Variable Selection in Nonparametric Sparse Regression
    Ingster Y.
    Stepanova N.
    [J]. Journal of Mathematical Sciences, 2014, 199 (2) : 184 - 201
  • [29] Variable Selection by Stepwise Slicing in Nonparametric Regression
    Nong, Jifu
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 430 - 433
  • [30] Nonparametric regression on functional variable and structural tests
    Delsol, Laurent
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 143 - 150