In-situ alignment of 3D printed anisotropic hard magnets

被引:12
|
作者
Suppan, M. [1 ]
Huber, C. [1 ]
Mathauer, K. [1 ]
Abert, C. [1 ,2 ]
Brucker, F. [1 ]
Gonzalez-Gutierrez, J. [3 ,7 ]
Schuschnigg, S. [3 ]
Groenefeld, M. [4 ]
Teliban, I [4 ]
Kobe, S. [5 ]
Saje, B. [6 ]
Suess, D. [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Univ Vienna, Platform MMM Math Magnetism Mat, A-1090 Vienna, Austria
[3] Univ Leoben, Inst Polymer Proc, A-8700 Leoben, Austria
[4] Magnetfabrik Bonn GmbH, D-53119 Bonn, Germany
[5] Jozef Stefan Inst, Dept Nanostruct Mat, Ljubljana 1000, Slovenia
[6] Kolektor Magnet Technol GmbH, D-45356 Essen, Germany
[7] Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg
关键词
D O I
10.1038/s41598-022-20669-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within this work, we demonstrate in-situ alignment of the easy axis single-crystal magnetic particles inside a polymer matrix using fused filament fabrication. Two different magnetic materials are investigated: (i) Strontium hexaferrite inside a PA6 matrix, fill grade: 49 vol% and (ii) Samarium iron nitride inside a PA12 matrix, fill grade: 44 vol%. In the presence of the external alignment field, the strontium hexaferrite particles inside the PA6 matrix can be well aligned with a ratio of remnant magnetization to saturation magnetization in an easy axis of 0.7. No significant alignment for samarium iron nitride could be achieved. The results show the feasibility to fabricate magnets with arbitrary and locally defined easy axis using fused filament fabrication since the permanent magnets (or alternatively an electromagnet) can be mounted on a rotatable platform.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] 3D Printed Anisotropic Metamaterial Substrates for Antenna Applications
    Christodoulides, Anastasios
    Feresidis, Alexandros
    2021 ANTENNA MEASUREMENT TECHNIQUES ASSOCIATION SYMPOSIUM (AMTA), 2021,
  • [22] Isotropic and anisotropic elasticity and yielding of 3D printed material
    Zou, Rui
    Xia, Yang
    Liu, Shiyi
    Hu, Ping
    Hou, Wenbin
    Hu, Qingyuan
    Shan, Chunlai
    COMPOSITES PART B-ENGINEERING, 2016, 99 : 506 - 513
  • [23] Anisotropic porous structure modeling for 3D printed objects
    Ying, Jianming
    Lu, Lin
    Tian, Lihao
    Yan, Xin
    Chen, Baoquan
    COMPUTERS & GRAPHICS-UK, 2018, 70 : 157 - 164
  • [24] IN-SITU CALIBRATION FOR LOAD CELLS IN 3D PRINTED BIPEDAL ROBOT USING 3D MODELING IN COMPUTER-AIDED DESIGN ENVIRONMENT
    Le, Tung X.
    Herron, Connor W.
    Leonessa, Alexander
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 11, 2023,
  • [25] Thermal performance of 3D concrete printed walls: calculated and in-situ measured U-values
    Tamimi, Adil Al
    Hassan, Habibelrahman
    Rodriguez-Ubinas, Edwin
    Alhaidary, Haidar
    Mansouri, Abraham
    JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, 2024, 23 (06) : 1903 - 1915
  • [26] Evaluating 3D printed sEMG electrodes with silver ink traces using in-situ impedance measurements
    Schouten, Martijn
    van de Maat, Philip
    Nizamis, Kostas
    Krijnen, Gijs
    2022 IEEE SENSORS, 2022,
  • [27] Toward automated construction: The design-to-printing workflow for a robotic in-situ 3D printed house
    Xu, Weiguo
    Huang, Shuyi
    Han, Dong
    Zhang, Zhiling
    Gao, Yuan
    Feng, Peng
    Zhang, Daobo
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [28] Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy
    Marc Sartison
    Simone Luca Portalupi
    Timo Gissibl
    Michael Jetter
    Harald Giessen
    Peter Michler
    Scientific Reports, 7
  • [29] Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy
    Sartison, Marc
    Portalupi, Simone Luca
    Gissibl, Timo
    Jetter, Michael
    Giessen, Harald
    Michler, Peter
    SCIENTIFIC REPORTS, 2017, 7
  • [30] Optical In-Situ Verification of 3D-Printed Electronic Circuits
    Wasserfall, Florens
    Ahlers, Daniel
    Hendrich, Norman
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 1302 - 1307