In-situ alignment of 3D printed anisotropic hard magnets

被引:12
|
作者
Suppan, M. [1 ]
Huber, C. [1 ]
Mathauer, K. [1 ]
Abert, C. [1 ,2 ]
Brucker, F. [1 ]
Gonzalez-Gutierrez, J. [3 ,7 ]
Schuschnigg, S. [3 ]
Groenefeld, M. [4 ]
Teliban, I [4 ]
Kobe, S. [5 ]
Saje, B. [6 ]
Suess, D. [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Univ Vienna, Platform MMM Math Magnetism Mat, A-1090 Vienna, Austria
[3] Univ Leoben, Inst Polymer Proc, A-8700 Leoben, Austria
[4] Magnetfabrik Bonn GmbH, D-53119 Bonn, Germany
[5] Jozef Stefan Inst, Dept Nanostruct Mat, Ljubljana 1000, Slovenia
[6] Kolektor Magnet Technol GmbH, D-45356 Essen, Germany
[7] Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg
关键词
D O I
10.1038/s41598-022-20669-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within this work, we demonstrate in-situ alignment of the easy axis single-crystal magnetic particles inside a polymer matrix using fused filament fabrication. Two different magnetic materials are investigated: (i) Strontium hexaferrite inside a PA6 matrix, fill grade: 49 vol% and (ii) Samarium iron nitride inside a PA12 matrix, fill grade: 44 vol%. In the presence of the external alignment field, the strontium hexaferrite particles inside the PA6 matrix can be well aligned with a ratio of remnant magnetization to saturation magnetization in an easy axis of 0.7. No significant alignment for samarium iron nitride could be achieved. The results show the feasibility to fabricate magnets with arbitrary and locally defined easy axis using fused filament fabrication since the permanent magnets (or alternatively an electromagnet) can be mounted on a rotatable platform.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] In-situ heating-and-electron tomography for materials research: from 3D (in-situ 2D) to 4D (in-situ 3D)
    Hata, Satoshi
    Ihara, Shiro
    Saito, Hikaru
    Murayama, Mitsuhiro
    MICROSCOPY, 2024, 73 (02) : 133 - 144
  • [12] In-situ synthesis and integration of gold nanoparticles into 3D printed optical fiber probes
    Chekkaramkodi, Dileep
    Turk, Said El
    Ali, Murad
    Butt, Haider
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [13] In-situ Semantic 3D Modeling
    Sankar, Aditya
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON HUMAN-COMPUTER INTERACTION WITH MOBILE DEVICES AND SERVICES (MOBILEHCI 2016), 2016, : 909 - 910
  • [14] Characterizing zeolites in 3D and in-situ
    Arslan, Ilke
    Roehling, John D.
    Batenburg, K. Joost
    Gates, Bruce C.
    Katz, Alexander
    Perea, Daniel
    Lercher, Johannes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [15] High Permittivity Anisotropic 3D Printed Material
    Harmon, Aaron
    Khilkevich, Victor
    Donnell, Kristen M.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY, EMCSI, 2022, : 1 - 6
  • [16] Enhanced 3D printed Al2O3 core via in-situ mullite
    Li, Qiaolei
    Meng, Xiantian
    Zhang, Xuechun
    Liang, Jingjing
    Zhang, Chaowei
    Li, Jinguo
    Zhou, Yizhou
    Sun, Xiaofeng
    ADDITIVE MANUFACTURING, 2022, 55
  • [17] In-situ laser sintering for the fabrication of fully 3D printed electronics composed of elastomeric materials
    van Dommelen, Ryan
    Haque, Rubaiyet, I
    Chandran, Olivier
    Lani, Sebastien
    Briand, Danick
    FLEXIBLE AND PRINTED ELECTRONICS, 2021, 6 (04):
  • [18] 3D printed guides for controlled alignment in biomechanics tests
    Verstraete, Matthias A.
    Willemot, Laurent
    Van Onsem, Stefaan
    Stevens, Cyrielle
    Arnout, Nele
    Victor, Jan
    JOURNAL OF BIOMECHANICS, 2016, 49 (03) : 484 - 487
  • [19] In-situ Quantification of 3D Scene Complexity
    Bilasco, Ioan Marius
    Lozano Espinosa, Rafael
    Martin, Herve
    INTERNATIONAL CONFERENCE ON ADVANCED GEOGRAPHIC INFORMATION SYSTEMS AND WEB SERVICES: GEOWS 2009, PROCEEDINGS, 2009, : 34 - +
  • [20] NMR magnets for portable applications using 3D printed materials
    Alnajjar, Belal M. K.
    Buchau, Andre
    Baumgaertner, Lars
    Anders, Jens
    JOURNAL OF MAGNETIC RESONANCE, 2021, 326