QUANTILE TOMOGRAPHY: USING QUANTILES WITH MULTIVARIATE DATA

被引:74
|
作者
Kong, Linglong [1 ]
Mizera, Ivan [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Data depth; growth charts; quantile regression; quantiles; HALF-SPACE DEPTH; CONTOURS; CHARACTERIZE; CONVERGENCE; PROBABILITY;
D O I
10.5705/ss.2010.224
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way to condense this kind of information; it is demonstrated that they are essentially halfspace (Tukey) depth levels sets, coinciding for elliptic distributions (in particular multivariate normal) with density contours. Relevant questions concerning their indexing, the possibility of the reverse retrieval of directional quantile information, invariance with respect to affine transformations, and approximation/asymptotic properties are studied. It is argued that analysis in terms of directional quantiles and their envelopes offers a straightforward probabilistic interpretation and thus conveys a concrete quantitative meaning; the directional definition can be adapted to elaborate frameworks, like estimation of extreme quantiles and directional quantile regression, the regression of depth contours on covariates. The latter facilitates the construction of multivariate growth charts-the question that motivated this development.
引用
收藏
页码:1589 / 1610
页数:22
相关论文
共 50 条
  • [41] Multivariate quantiles in hydrological frequency analysis
    Chebana, F.
    Ouarda, T. B. M. J.
    [J]. ENVIRONMETRICS, 2011, 22 (01) : 63 - 78
  • [42] Flexible quantile contour estimation for multivariate functional data: Beyond convexity
    Agarwal, Gaurav
    Tu, Wei
    Sun, Ying
    Kong, Linglong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
  • [43] Quantile regression for longitudinal data via the multivariate generalized hyperbolic distribution
    Florez, Alvaro J.
    Keilegom, Ingrid Van
    Molenberghs, Geert
    Verhasselt, Anneleen
    [J]. STATISTICAL MODELLING, 2022, 22 (06) : 566 - 584
  • [44] Quantile Autoencoder With Abnormality Accumulation for Anomaly Detection of Multivariate Sensor Data
    Ryu, Seunghyoung
    Yim, Jiyeon
    Seo, Junghoon
    Yu, Yonggyun
    Seo, Hogeon
    [J]. IEEE ACCESS, 2022, 10 : 70428 - 70439
  • [45] Quantification of SMR and SDA in aquatic animals using quantiles and non-linear quantile regression
    Chabot, D.
    Claireaux, G.
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2008, 150 (03): : S99 - S99
  • [46] Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness
    Dette, Holger
    Hoderlein, Stefan
    Neumeyer, Natalie
    [J]. JOURNAL OF ECONOMETRICS, 2016, 191 (01) : 129 - 144
  • [47] MULTIVARIATE RANKS AND QUANTILES USING OPTIMAL TRANSPORT: CONSISTENCY, RATES AND NONPARAMETRIC TESTING
    Ghosal, Promit
    Sen, Bodhisattva
    [J]. ANNALS OF STATISTICS, 2022, 50 (02): : 1012 - 1037
  • [48] Exploiting the quantile optimality ratio in finding confidence intervals for quantiles
    Prendergast, Luke A.
    Staudte, Robert G.
    [J]. STAT, 2016, 5 (01): : 70 - 81
  • [49] MULTIVARIATE QUANTILE FUNCTION MODELS
    Cai, Yuzhi
    [J]. STATISTICA SINICA, 2010, 20 (02) : 481 - 496
  • [50] Multivariate Quantile Function Forecaster
    Kan, Kelvin
    Park, Youngsuk
    Aubet, Francois-Xavier
    Benidis, Konstantinos
    Gasthaus, Jan
    Januschowski, Tim
    Ruthotto, Lars
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151