Bayesian method;
tau th quantile surface;
tau th quantile curve;
multivariate quantile function;
MCMC;
log return;
REGRESSION;
DEPTH;
CONTOURS;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Multivariate quantiles have been defined by a number of researchers and can be estimated by different methods. However, little work can be found in the literature about Bayesian estimation of joint quantiles of multivariate random variables. In this paper we present a multivariate quantile function model and propose a Bayesian method to estimate the model parameters. The methodology developed here enables us to estimate the multivariate quantile surfaces and the joint probability without direct use of the joint probability distribution or density functions of the random variables of interest. Furthermore, simulation studies and applications of the methodology to bivariate economics data sets show that the method works well both theoretically and practically.
机构:
Univ Sydney, Discipline Business Analyt, Sydney, NSW, AustraliaUniv Sydney, Discipline Business Analyt, Sydney, NSW, Australia
Chen, Wilson Ye
Peters, Gareth W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Sydney, Discipline Business Analyt, Sydney, NSW, Australia
Peters, Gareth W.
Gerlach, Richard H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Discipline Business Analyt, Sydney, NSW, AustraliaUniv Sydney, Discipline Business Analyt, Sydney, NSW, Australia
Gerlach, Richard H.
Sisson, Scott A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
Univ New South Wales, UNSW Data Sci Hub, Sydney, NSW, AustraliaUniv Sydney, Discipline Business Analyt, Sydney, NSW, Australia