Invertibility of Multipliers in Hilbert C*-Modules

被引:0
|
作者
Azandaryani, Morteza Mirzaee [1 ]
机构
[1] Univ Qom, Dept Math, Qom, Iran
关键词
Hilbert C*-module; Bessel multiplier; semi-normalized symbol; invertibility; BESSEL MULTIPLIERS; G-FRAMES;
D O I
10.2298/FIL1817073M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some sufficient conditions under which Bessel multipliers in Hilbert C*-modules with semi-normalized symbols are invertible and we calculate the inverses. Especially we consider the invertibility of Bessel multipliers when the elements of their symbols are positive and when their Bessel sequences are equivalent, duals, modular Riesz bases or stable under small perturbations. We show that in these cases the inverse of a Bessel multiplier can be represented as a Bessel multiplier.
引用
收藏
页码:6073 / 6085
页数:13
相关论文
共 50 条
  • [41] A SURVEY ON EXTENSIONS OF HILBERT C*-MODULES
    Kolarec, Biserka
    QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 29 : 209 - 221
  • [42] ON ORTHOGONAL SYSTEMS IN HILBERT C*-MODULES
    Landi, Giovanni
    Pavlov, Alexander
    JOURNAL OF OPERATOR THEORY, 2012, 68 (02) : 487 - 500
  • [43] On equivariant embedding of Hilbert C* modules
    Goswami, Debashish
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (01): : 63 - 70
  • [44] Geometrical aspects of Hilbert C*-modules
    Frank, M
    POSITIVITY, 1999, 3 (03) : 215 - 243
  • [45] On∗-fusion frames for Hilbert C∗-modules
    Assila, Nadia
    Kabbaj, Samir
    Zoubeir, Hicham
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [46] Pullback diagram of Hilbert C*-modules
    Amyari, Maryam
    Chakoshi, Mahnaz
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 569 - 575
  • [47] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [48] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [49] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [50] Pair frames in Hilbert C*-modules
    Azandaryani, M. Mirzaee
    Fereydooni, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):