A packing dimension theorem for Gaussian random fields

被引:7
|
作者
Xiao, Yimin [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
FRACTIONAL BROWNIAN-MOTION; PROJECTIONS;
D O I
10.1016/j.spl.2008.07.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X(t), t is an element of R-N} be a Gaussian random field with values in R-d defined by X (t) = (X-1 (t), ..., X-d (t)), for all(t) is an element of R-N, where X-l,..., X-d are independent copies of a centered Gaussian random field X-0. Under certain general conditions. Xiao [Xiao, Y.. 2007. Strong local nondeterminism and the sample path properties of Gaussian random fields. In: Lai, Tze Leung, Shao, Qman, Qian, Lianfen (Eds.), Asymptotic Theory in Probability and Statistics with Applications. Higher Education Press, Beijing, pp. 136-176] defined an upper index alpha* and a lower index a.. for X-0 and showed that the Hausdorff dimensions of the range X ([0, 1](N)) and graph Gr X ([0, 1](N)) are determined by the upper index a*. In this paper, we prove that the packing dimensions of X ([0. 1](N)) and GrX([0, 1](N)) are determined by the lower index alpha* of X-0. Namely, dim(P) X ([0, 1](N)) = min {d, N/alpha(*)}, a.s. and dim(P) Gr X ([0, 1](N)) = min {N/alpha(*,) N + (1-alpha(*))d}, a.s. This verifies a conjecture of Xiao in the above-cited reference. Our method is based on the potential-theoretic approach to packing dimension due to Falconer and Howroyd [Falconer, K.J., Howroyd, J.D., 1997. Packing dimensions for projections and dimension profiles. Math. Proc. Cambridge Philos. Soc. 121, 269-286]. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 97
页数:10
相关论文
共 50 条
  • [41] OPTIMIZATION OF GAUSSIAN RANDOM FIELDS
    Dow, Eric
    Wang, Qiqi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : A1685 - A1704
  • [42] GAUSSIAN RANDOM-FIELDS
    BROMLEY, C
    KALLIANPUR, G
    APPLIED MATHEMATICS AND OPTIMIZATION, 1980, 6 (04): : 361 - 376
  • [43] Redundancy in Gaussian random fields
    De Bortoli, Valentin
    Desolneux, Agnes
    Galerne, Bruno
    Leclaire, Arthur
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 627 - 660
  • [44] Packing dimension of measures on a random Cantor set
    Baek, IS
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (05) : 933 - 944
  • [45] A Bayesian Framework to Identify Random Parameter Fields Based on the Copula Theorem and Gaussian Fields: Application to Polycrystalline Materials
    Rappel, H.
    Wu, L.
    Noels, L.
    Beex, L. A. A.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2019, 86 (12):
  • [46] STRUCTURES IN RANDOM-FIELDS - GAUSSIAN FIELDS
    BETANCORTRIJO, J
    PHYSICAL REVIEW A, 1992, 45 (06): : 3447 - 3466
  • [47] A FUNCTIONAL CENTRAL LIMIT-THEOREM FOR THE QUADRATIC VARIATION OF A CLASS OF GAUSSIAN RANDOM-FIELDS
    DEO, CM
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 247 - 251
  • [48] Central Limit Theorem for Lipschitz-Killing Curvatures of Excursion Sets of Gaussian Random Fields
    Kratz, Marie
    Vadlamani, Sreekar
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (03) : 1729 - 1758
  • [49] GAUSSIAN RANDOM PARTICLES WITH FLEXIBLE HAUSDORFF DIMENSION
    Hansen, Linda V.
    Thorarinsdotiir, Thordis L.
    Ovcharov, Evgeni
    Gneiting, Tilmann
    Richards, Donald
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) : 307 - 327
  • [50] HAUSDORFF DIMENSION OF GRAPH OF A GAUSSIAN RANDOM FIELD
    ZINCHENKO, NM
    MATHEMATICAL NOTES, 1977, 21 (1-2) : 72 - 74