Recursion Operators and Frobenius Manifolds

被引:7
|
作者
Magri, Franco [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
F-manifolds; Frobenius manifolds; Poisson-Nijenhuis manifolds;
D O I
10.3842/SIGMA.2012.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note I exhibit a "discrete homotopy" which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] MANIFOLDS WITH DOUBLE STRUCTURE AND RECURSION OPERATORS
    GUTKIN, D
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1985, 43 (03): : 349 - 357
  • [2] Frobenius manifolds
    Hitchin, N
    GAUGE THEORY AND SYMPLECTIC GEOMETRY, 1997, 488 : 69 - 112
  • [3] On recursion operators
    Sanders, JA
    Wang, JP
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 149 (1-2) : 1 - 10
  • [4] Frobenius Manifolds in the Context of A-Manifolds
    Malakhaltsev, Mikhail
    Segovia, Carlos
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 127 - 140
  • [5] Weak Frobenius manifolds
    Hertling, C
    Manin, Y
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (06) : 277 - 286
  • [6] Einstein Field Equation, Recursion Operators, Noether and Master Symmetries in Conformable Poisson Manifolds
    Hounkonnou, Mahouton Norbert
    Landalidji, Mahougnon Justin
    Mitrovic, Melanija
    UNIVERSE, 2022, 8 (04)
  • [7] Sums of Recursion Operators
    Her, Hai-Long
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 753 - 766
  • [8] The geometry of recursion operators
    Bande, G.
    Kotschick, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) : 737 - 749
  • [9] ON THE THEORY OF RECURSION OPERATORS
    KONOPELCHENKO, BG
    ZAKHAROV, VE
    LANDAU, LD
    PHYSICA D-NONLINEAR PHENOMENA, 1984, 11 (03) : 405 - 405
  • [10] The Geometry of Recursion Operators
    G. Bande
    D. Kotschick
    Communications in Mathematical Physics, 2008, 280 : 737 - 749