Recursion Operators and Frobenius Manifolds

被引:7
|
作者
Magri, Franco [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
F-manifolds; Frobenius manifolds; Poisson-Nijenhuis manifolds;
D O I
10.3842/SIGMA.2012.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note I exhibit a "discrete homotopy" which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] FROBENIUS MANIFOLDS FOR ELLIPTIC ROOT SYSTEMS
    Satake, Ikuo
    OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (01) : 301 - 330
  • [42] Some algebraic examples of Frobenius manifolds
    A. E. Mironov
    I. A. Taimanov
    Theoretical and Mathematical Physics, 2007, 151 : 604 - 613
  • [43] The abelian/nonabelian correspondence and Frobenius manifolds
    Ciocan-Fontanine, Ionut
    Kim, Bumsig
    Sabbah, Claude
    INVENTIONES MATHEMATICAE, 2008, 171 (02) : 301 - 343
  • [44] A Remark on Deformations of Hurwitz Frobenius Manifolds
    Buryak, Alexandr
    Shadrin, Sergey
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) : 243 - 252
  • [45] Frobenius manifolds and variance of the spectral numbers
    Hertling, C
    NEW DEVELOPMENTS IN SINGULARITY THEORY, 2001, 21 : 235 - 255
  • [46] The Abelian/Nonabelian correspondence and Frobenius manifolds
    Ionuţ Ciocan-Fontanine
    Bumsig Kim
    Claude Sabbah
    Inventiones mathematicae, 2008, 171 : 301 - 343
  • [47] Some algebraic examples of Frobenius manifolds
    Mironov, A. E.
    Taimanov, I. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (02) : 604 - 613
  • [48] Real Doubles of Hurwitz Frobenius manifolds
    Shramchenko, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (03) : 635 - 680
  • [49] “Real Doubles” of Hurwitz Frobenius Manifolds
    Vasilisa Shramchenko
    Communications in Mathematical Physics, 2005, 256 : 635 - 680
  • [50] From Primitive Forms to Frobenius manifolds
    Saito, Kyoji
    Takahashi, Atsushi
    FROM HODGE THEORY TO INTEGRABILITY AND TQFT: TT*- GEOMETRY, 2008, 78 : 31 - +