Adding Decoherence to the Wigner Equation

被引:2
|
作者
Barletti, Luigi [1 ]
Frosali, Giovanni [1 ]
Giovannini, Elisa [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Decoherence; Wigner equation; quantum open systems; QUANTUM; TRANSPORT; MODELS;
D O I
10.1080/23324309.2018.1520732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the detailed description of the single-collision decoherence mechanism proposed by Adami, Hauray and Negulescu (2016), we derive a Wigner equation endowed with a decoherence term of a fairly general form. This equation is shown to contain well known decoherence models, such as the Wigner-Fokker-Planck equation, as particular cases. The effect of the decoherence mechanism on the dynamics of the macroscopic moments (density, current, energy) is illustrated by deriving the corresponding set of balance laws. The issue of large-time asymptotics of our model is addressed in the particular, although physically relevant, case of Gaussian solutions. It is shown that the addition of a Caldeira-Legget friction term provides the asymptotic behavior that one expects on the basis of physical considerations.
引用
收藏
页码:209 / 225
页数:17
相关论文
共 50 条
  • [41] A Note on Wigner Functions and *-Genvalue Equation
    Jing Si-Cong
    Lin Bing-Sheng
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (04) : 605 - 608
  • [42] The Wigner equation in the presence of electromagnetic potentials
    Nedjalkov, Mihail
    Weinbub, Josef
    Ellinghaus, Paul
    Selberherr, Siegfried
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (04) : 888 - 893
  • [43] Stability of the Wigner equation - a singular case
    Ilisevic, Dijana
    Turnsek, Aleksej
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 273 - 287
  • [44] Limit of Fluctuations of Solutions of Wigner Equation
    Komorowski, Tomasz
    Peszat, Szymon
    Ryzhik, Lenya
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (02) : 479 - 510
  • [45] The Wigner equation in the presence of electromagnetic potentials
    Mihail Nedjalkov
    Josef Weinbub
    Paul Ellinghaus
    Siegfried Selberherr
    [J]. Journal of Computational Electronics, 2015, 14 : 888 - 893
  • [46] Limit of Fluctuations of Solutions of Wigner Equation
    Tomasz Komorowski
    Szymon Peszat
    Lenya Ryzhik
    [J]. Communications in Mathematical Physics, 2009, 292 : 479 - 510
  • [47] Boundary conditions and the Wigner equation solution
    Ivan Dimov
    Mihail Nedjalkov
    Jean-Michel Sellier
    Siegfried Selberherr
    [J]. Journal of Computational Electronics, 2015, 14 : 859 - 863
  • [48] Frequency response of the decoherence in a Duffing oscillator and the dispersion of the Wigner function in the Fourier domain
    Zhang, Shi-Hui
    Wang, Wu-Qing
    [J]. CHINESE JOURNAL OF PHYSICS, 2016, 54 (06) : 906 - 911
  • [49] Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions
    Gomis, P.
    Perez, A.
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [50] Quantum decoherence of I2 in liquid xenon: A classical Wigner approach
    Elran, Yossi
    Brumer, Paul
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (23):