Functional linear regression with derivatives

被引:29
|
作者
Mas, Andre [1 ]
Pumo, Besnik [2 ]
机构
[1] Inst Modelisat Math Montpellier, Montpellier 5, France
[2] Agrocampus Ouest Inst Natl Hort & Paysage, Angers 1, France
关键词
functional data; linear regression model; differential operator; penalisation; spectrometric curves; STATISTICAL VIEW;
D O I
10.1080/10485250802401046
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new model of linear regression for random functional inputs taking into account the first-order derivative of the data. We propose an estimation method that comes down to solving a special linear inverse problem. Our procedure tackles the problem through a double and synchronised penalisation. An asymptotic expansion of the mean square prevision error is given. The model and the method are applied to a benchmark dataset of spectrometric curves and compared with other functional models.
引用
收藏
页码:19 / 40
页数:22
相关论文
共 50 条
  • [31] Local linear regression for functional data
    A. Berlinet
    A. Elamine
    A. Mas
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 1047 - 1075
  • [32] On rates of convergence in functional linear regression
    Li, Yehua
    Hsing, Tailen
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (09) : 1782 - 1804
  • [33] Functional linear regression with Huber loss
    Tong, Hongzhi
    [J]. JOURNAL OF COMPLEXITY, 2023, 74
  • [34] Multivariate functional linear regression and prediction
    Chiou, Jeng-Min
    Yang, Ya-Fang
    Chen, Yu-Ting
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 301 - 312
  • [35] Distributed estimation of functional linear regression with functional responses
    Liu, Jiamin
    Li, Rui
    Lian, Heng
    [J]. METRIKA, 2024, 87 (01) : 21 - 30
  • [36] Asymptotics of prediction in functional linear regression with functional outputs
    Crambes, Christophe
    Mas, Andre
    [J]. BERNOULLI, 2013, 19 (5B) : 2627 - 2651
  • [37] Distributed estimation of functional linear regression with functional responses
    Jiamin Liu
    Rui Li
    Heng Lian
    [J]. Metrika, 2024, 87 : 21 - 30
  • [38] Linear functional regression: the case of fixed design and functional response
    Cuevas, A
    Febrero, M
    Fraiman, R
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (02): : 285 - 300
  • [39] Robust penalized estimators for functional linear regression
    Kalogridis, Ioannis
    Van Aelst, Stefan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [40] Partial functional linear regression with autoregressive errors
    Xiao, Piaoxuan
    Wang, Guochang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (13) : 4515 - 4536