Multivariate functional linear regression and prediction

被引:66
|
作者
Chiou, Jeng-Min [1 ]
Yang, Ya-Fang [1 ]
Chen, Yu-Ting [1 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
关键词
Functional prediction; Functional principal component analysis; Functional regression; Multivariate functional data; Stochastic processes; MODELS; CONVERGENCE; RATES;
D O I
10.1016/j.jmva.2015.10.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a multivariate functional linear regression (mFLR) approach to analysis and prediction of multivariate functional data in cases in which, both the response and predictor variables contain multivariate random functions. The mFLR model, coupled with the multivariate functional principal component analysis approach, takes the advantage of cross-correlation between component functions within the multivariate response and predictor variables, respectively. The estimate of the matrix of bivariate regression functions is consistent in the sense of the multi-dimensional Gram-Schmidt norm and is asymptotically normally distributed. The prediction intervals of the multivariate random trajectories are available for predictive inference. We show the finite sample performance of mFLR by a simulation study and illustrate the method through predicting multivariate traffic flow trajectories for up-to-date and partially observed traffic streams. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [1] Prediction in functional linear regression
    Cai, T. Tony
    Hall, Peter
    ANNALS OF STATISTICS, 2006, 34 (05): : 2159 - 2179
  • [2] Variable Selection in Multivariate Functional Linear Regression
    Yeh, Chi-Kuang
    Sang, Peijun
    STATISTICS IN BIOSCIENCES, 2023, 17 (1) : 17 - 34
  • [3] Functional partial linear regression with quadratic regression for the multivariate predictor
    Huang, Huiyu
    Qin, Meng
    Qing, Peng
    Wang, Guochang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [4] On prediction error in functional linear regression
    Apanasovich, Tatiyana V.
    Goldstein, Edward
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1807 - 1810
  • [5] Nucleophilicity Prediction via Multivariate Linear Regression Analysis
    Orlandi, Manuel
    Escudero-Casao, Margarita
    Licini, Giulia
    JOURNAL OF ORGANIC CHEMISTRY, 2021, 86 (04): : 3555 - 3564
  • [6] Multivariate Local Linear Regression in the Prediction of ARFIMA Processes
    Zhou, Yongdao
    Gao, Shilong
    Lv, Wangyong
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [7] Asymptotics of prediction in functional linear regression with functional outputs
    Crambes, Christophe
    Mas, Andre
    BERNOULLI, 2013, 19 (5B) : 2627 - 2651
  • [8] Minimax and Adaptive Prediction for Functional Linear Regression
    Cai, T. Tony
    Yuan, Ming
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) : 1201 - 1216
  • [9] On asymptotic distribution of prediction in functional linear regression
    Khademnoe, Omid
    Hosseini-Nasab, S. Mohammad E.
    STATISTICS, 2016, 50 (05) : 974 - 990
  • [10] On prediction rate in partial functional linear regression
    Shin, Hyejin
    Lee, Myung Hee
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 103 (01) : 93 - 106