Multivariate functional linear regression and prediction

被引:66
|
作者
Chiou, Jeng-Min [1 ]
Yang, Ya-Fang [1 ]
Chen, Yu-Ting [1 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
关键词
Functional prediction; Functional principal component analysis; Functional regression; Multivariate functional data; Stochastic processes; MODELS; CONVERGENCE; RATES;
D O I
10.1016/j.jmva.2015.10.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a multivariate functional linear regression (mFLR) approach to analysis and prediction of multivariate functional data in cases in which, both the response and predictor variables contain multivariate random functions. The mFLR model, coupled with the multivariate functional principal component analysis approach, takes the advantage of cross-correlation between component functions within the multivariate response and predictor variables, respectively. The estimate of the matrix of bivariate regression functions is consistent in the sense of the multi-dimensional Gram-Schmidt norm and is asymptotically normally distributed. The prediction intervals of the multivariate random trajectories are available for predictive inference. We show the finite sample performance of mFLR by a simulation study and illustrate the method through predicting multivariate traffic flow trajectories for up-to-date and partially observed traffic streams. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [21] A note on multivariate linear regression
    Woerz, Sascha
    Bernhardt, Heinz
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (19) : 4785 - 4790
  • [22] The Prediction of Indices at Infall of Confluent Flow Network of Wastewater with Multivariate Linear Regression
    Gao Xiang
    Bai Lina
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5125 - 5129
  • [23] Lasso in infinite dimension: application to variable selection in functional multivariate linear regression
    Roche, Angelina
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3357 - 3405
  • [24] Bayesian regression with multivariate linear splines
    Holmes, CC
    Mallick, BK
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 3 - 17
  • [25] ENVELOPES FOR ELLIPTICAL MULTIVARIATE LINEAR REGRESSION
    Forzani, Liliana
    Su, Zhihua
    STATISTICA SINICA, 2021, 31 (01) : 301 - 332
  • [26] Multivariate linear regression with missing values
    Beyad, Yaser
    Maeder, Marcel
    ANALYTICA CHIMICA ACTA, 2013, 796 : 38 - 41
  • [27] Predictive modeling on multivariate linear regression
    Wang, Huiwen
    Meng, Jie
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2007, 33 (04): : 500 - 504
  • [28] Simple linear and multivariate regression models
    Rodriguez del Aguila, M. M.
    Benitez-Parejo, N.
    ALLERGOLOGIA ET IMMUNOPATHOLOGIA, 2011, 39 (03) : 159 - 173
  • [29] Censored Multivariate Linear Regression Model
    Sousa, Rodney
    Pereira, Isabel
    Silva, Maria Eduarda
    RECENT DEVELOPMENTS IN STATISTICS AND DATA SCIENCE, SPE2021, 2022, 398 : 293 - 307
  • [30] Bootstrapping for multivariate linear regression models
    Eck, Daniel J.
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 141 - 149