On the Segmentation of 3D LIDAR Point Clouds

被引:0
|
作者
Douillard, B. [1 ]
Underwood, J. [1 ]
Kuntz, N. [1 ]
Vlaskine, V. [1 ]
Quadros, A. [1 ]
Morton, P. [1 ]
Frenkel, A. [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia
关键词
CUTS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a set of segmentation methods for various types of 3D point clouds. Segmentation of dense 3D data (e. g. Riegl scans) is optimised via a simple yet efficient voxelisation of the space. Prior ground extraction is empirically shown to significantly improve segmentation performance. Segmentation of sparse 3D data (e. g. Velodyne scans) is addressed using ground models of non-constant resolution either providing a continuous probabilistic surface or a terrain mesh built from the structure of a range image, both representations providing close to real-time performance. All the algorithms are tested on several hand labeled data sets using two novel metrics for segmentation evaluation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] GECNN for Weakly Supervised Semantic Segmentation of 3D Point Clouds
    He, Zifen
    Zhu, Shouye
    Huang, Ying
    Zhang, Yinhui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12) : 2237 - 2243
  • [42] Learning Regional Purity for Instance Segmentation on 3D Point Clouds
    Dong, Shichao
    Lin, Guosheng
    Hung, Tzu-Yi
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 56 - 72
  • [43] Global Context Reasoning for Semantic Segmentation of 3D Point Clouds
    Ma, Yanni
    Guo, Yulan
    Liu, Hao
    Lei, Yinjie
    Wen, Gongjian
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2920 - 2929
  • [44] 3D Object Segmentation of Point Clouds using Profiling Techniques
    Sithole, G.
    Mapurisa, W. T.
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2012, 1 (01): : 60 - 76
  • [45] Segmentation of 3D Point Clouds for Weak Texture Ground Plane
    Geng, Ming-can
    Bi, Sheng
    Wei, Zhi-xuan
    Yan, Quan-fa
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 124 - 129
  • [46] Rethinking Task and Metrics of Instance Segmentation on 3D Point Clouds
    Arase, Kosuke
    Mukuta, Yusuke
    Harada, Tatsuya
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4105 - 4113
  • [47] Unsupervised 3D Object Segmentation of Point Clouds by Geometry Consistency
    Song, Ziyang
    Yang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 8459 - 8473
  • [48] Segmentation-Based Classification for 3D Urban Point Clouds
    Xiang, Binbin
    Yao, Jian
    Lu, Xiaohu
    Li, Li
    Xie, Renping
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 172 - 177
  • [49] Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds
    Stanescu, Ana
    Fleck, Philipp
    Schmalstieg, Dieter
    Arth, Clemens
    ADJUNCT PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2018, : 206 - 211
  • [50] An extension of the Felzenszwalb-Huttenlocher segmentation to 3D point clouds
    Sima, Mihai-Cotizo
    Nuechter, Andreas
    FIFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2012): COMPUTER VISION, IMAGE ANALYSIS AND PROCESSING, 2013, 8783