On the Segmentation of 3D LIDAR Point Clouds

被引:0
|
作者
Douillard, B. [1 ]
Underwood, J. [1 ]
Kuntz, N. [1 ]
Vlaskine, V. [1 ]
Quadros, A. [1 ]
Morton, P. [1 ]
Frenkel, A. [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia
关键词
CUTS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a set of segmentation methods for various types of 3D point clouds. Segmentation of dense 3D data (e. g. Riegl scans) is optimised via a simple yet efficient voxelisation of the space. Prior ground extraction is empirically shown to significantly improve segmentation performance. Segmentation of sparse 3D data (e. g. Velodyne scans) is addressed using ground models of non-constant resolution either providing a continuous probabilistic surface or a terrain mesh built from the structure of a range image, both representations providing close to real-time performance. All the algorithms are tested on several hand labeled data sets using two novel metrics for segmentation evaluation.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Monitoring Critical Infrastructure Using 3D LiDAR Point Clouds
    Sharifisoraki, Z.
    Dey, A.
    Selzler, R.
    Amini, M.
    Green, J. R.
    Rajan, S.
    Kwamena, F. A.
    IEEE ACCESS, 2023, 11 : 314 - 336
  • [32] Mobile LiDAR Scanner for the Generation of 3D Georeferenced Point Clouds
    Oria-Aguilera, Homero
    Alvarez-Perez, Hector
    Garcia-Garcia, Delvis
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION/XXIII CONGRESS OF THE CHILEAN ASSOCIATION OF AUTOMATIC CONTROL (ICA-ACCA), 2018,
  • [33] Mapping the Static Parts of Dynamic Scenes from 3D LiDAR Point Clouds Exploiting Ground Segmentation
    Arora, Mehul
    Wiesmann, Louis
    Chen, Xieyuanli
    Stachniss, Cyrill
    10TH EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2021), 2021,
  • [34] Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds
    Tang, Fangzhou
    Zhu, Bocheng
    Sun, Junren
    REMOTE SENSING, 2025, 17 (02)
  • [35] Improving Map Re-localization with Deep 'Movable' Objects Segmentation on 3D LiDAR Point Clouds
    Vaquero, Victor
    Fischer, Kai
    Moreno-Noguer, Francesc
    Sanfeliu, Alberto
    Milz, Stefan
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 942 - 949
  • [36] WEAKLY SUPERVISED SEGMENTATION-AIDED CLASSIFICATION OF URBAN SCENES FROM 3D LIDAR POINT CLOUDS
    Guinard, Stephan
    Landrieu, Loic
    ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 151 - 157
  • [37] Axial Attention Inside a U-Net for Semantic Segmentation of 3D Sparse LiDAR Point Clouds
    Yin, Tang-Kai
    Wu, Liang-Yue
    Hong, Tzung-Pei
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1543 - 1549
  • [38] Instance Segmentation of LiDAR Point Clouds
    Zhang, Feihu
    Guan, Chenye
    Fang, Jin
    Bai, Song
    Yang, Ruigang
    Torr, Philip H. S.
    Prisacariu, Victor
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9448 - 9455
  • [39] 3D SaccadeNet: A Single-Shot 3D Object Detector for LiDAR Point Clouds
    Wen, Lihua
    Vo, Xuan-Thuy
    Jo, Kang-Hyun
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 1225 - 1230
  • [40] Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds
    Engelmann, Francis
    Kontogianni, Theodora
    Hermans, Alexander
    Leibe, Bastian
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 716 - 724