Correlating of Thermal Conductivity of monatomic Gases Using Artificial Neural Networks

被引:0
|
作者
Melzi, Naima [1 ]
Khaouane, Latifa [1 ]
Hanini, Salah [1 ]
Laidi, Maamar [1 ]
机构
[1] Univ Medea, Lab Biomat & Transport Phenomena LBMPT, Medea, Algeria
关键词
Artificial neural network; Modeling; Prediction; Thermal conductivity; monatomic gases;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aset of 119 monatomic Gas was used to train validation and test the performance of the ANN, good correlations were found (R=0.993 for NN). The root mean squared errors for the total data set were 1%, and mean square errors (MSE) 0.01 for NN. Moreover, it was revealed by the comparison between the forecasted outcomes and other models that the neural network models provided greater results.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks
    Trejo-Alonso, Josue
    Fuentes, Carlos
    Chavez, Carlos
    Quevedo, Antonio
    Gutierrez-Lopez, Alfonso
    Gonzalez-Correa, Brandon
    [J]. WATER, 2021, 13 (05)
  • [22] Correlating thermal conductivity of pure hydrocarbons and aromatics via perceptron artificial neural network (PANN) method
    Mostafa Lashkarbolooki
    Ali Zeinolabedini Hezave
    Mahdi Bayat
    [J]. Chinese Journal of Chemical Engineering, 2017, 25 (05) : 547 - 554
  • [23] Correlating thermal conductivity of pure hydrocarbons and aromatics via perceptron artificial neural network (PANN) method
    Lashkarbolooki, Mostafa
    Hezave, Ali Zeinolabedini
    Bayat, Mahdi
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2017, 25 (05) : 547 - 554
  • [24] Determination of the Boyle temperature of pure gases using artificial neural networks
    Coccia, Gianluca
    Di Nicola, Giovanni
    Tomassetti, Sebastiano
    Pierantozzi, Mariano
    Passerini, Giorgio
    [J]. FLUID PHASE EQUILIBRIA, 2019, 493 : 36 - 42
  • [25] Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks
    Turias, IJ
    Gutiérrez, JM
    Galindo, PL
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (3-4) : 609 - 619
  • [26] THERMAL CONDUCTIVITY PREDICTION OF FRUITS AND VEGETABLES USING NEURAL NETWORKS
    Hussain, Mohamed Azlan
    Rahman, M. Shafiur
    [J]. INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 1999, 2 (02) : 121 - 137
  • [27] THE THERMAL CONDUCTIVITY OF MONATOMIC DIELECTRIC LIQUIDS
    EISENSCHITZ, R
    BOOT, AR
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1959, 74 (476): : 208 - 216
  • [28] Methodology for the Prediction of the Thermal Conductivity of Concrete by Using Neural Networks
    Rosa, Ana Carolina
    Elomari, Youssef
    Calderon, Alejandro
    Mateu, Carles
    Haddad, Assed
    Boer, Dieter
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [29] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [30] Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs)
    Rostami, Sara
    Toghraie, Davood
    Shabani, Behrooz
    Sina, Nima
    Barnoon, Pouya
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (02) : 1097 - 1105