Prediction of thermal conductivity of various nanofluids using artificial neural network

被引:129
|
作者
Ahmadloo, Ebrahim [1 ]
Azizi, Sadra [2 ]
机构
[1] Islamic Azad Univ, Darab Branch, Young Researchers & Elite Club, Darab, Iran
[2] Islamic Azad Univ, Yasooj Branch, Young Researchers & Elite Club, Yasuj, Iran
关键词
Nanofluids; Thermal conductivity; Artificial neural network; HEAT-TRANSFER; PARTICLE-SIZE; VISCOSITY; MODEL; ENHANCEMENT; DIFFUSIVITY; OXIDE; OPTIMIZATION; TEMPERATURE; ALGORITHM;
D O I
10.1016/j.icheatmasstransfer.2016.03.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a 5-input artificial neural network (ANN) model for the prediction of the thermal conductivity ratio of nanofluids to the base fluid (k(nf)/k(f)) of various nanofluids based on water and ethylene glycol (EG) and a type of transformer oil. The studied nanofluids are Al2O3-Water, Al-Water, TiO2-Water, Cu-Water, Cuo-Water, ZrO2-Water, Al2O3-EG, Al-EG, Cu-EG, Cuo-EG, Mg(OH)(2)-EG, Al2O3-Oil, Al-Oil, Cuo-Oil and Cu-Oil (15 nanofluids). The network is designed and trained using a total of 776 experimental data points collected from 21 sources of experimental data available in the literature. Average diameter, volume fraction, thermal conductivity of nanoparticles and temperature as well as some appropriated numbers for both nanoparticle and base fluid are chosen as input variables of the network, whereas the corresponding value of (k(nf)/k(f)) is selected as its target. The developed optimal ANN model shows a reasonable agreement in predicting experimental data with mean absolute percent error of 1.26% and 1.44% and correlation coefficient of 0.995 and 0.993 for training and testing data sets, respectively. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 50 条
  • [1] Prediction of Thermal Conductivity of Various Nanofluids with Ethylene Glycol using Artificial Neural Network
    Wang, Xuehui
    Yan, Xiaona
    Gao, Neng
    Chen, Guangming
    JOURNAL OF THERMAL SCIENCE, 2020, 29 (06) : 1504 - 1512
  • [2] Prediction of Thermal Conductivity of Various Nanofluids with Ethylene Glycol using Artificial Neural Network
    WANG Xuehui
    YAN Xiaona
    GAO Neng
    CHEN Guangming
    JournalofThermalScience, 2020, 29 (06) : 1504 - 1512
  • [3] Prediction of Thermal Conductivity of Various Nanofluids with Ethylene Glycol using Artificial Neural Network
    Xuehui Wang
    Xiaona Yan
    Neng Gao
    Guangming Chen
    Journal of Thermal Science, 2020, 29 : 1504 - 1512
  • [4] Thermal Conductivity Prediction of Nanofluids Containing SiC particles by Using Artificial Neural Network
    Shahzad, Rehman Muhammad
    Fard, Habib Forootan
    Mahariq, Ibrahim
    Assad, Mamdouh El Haj
    AlShabi, Mohammad
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS XII, 2022, 12090
  • [5] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Ismail, A. S.
    Sathyamurthy, Ravishankar
    Abdelhamid, Talaat
    Edreis, Elbager M. A.
    Kabeel, A. E.
    Haiou, Zhang
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [6] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Ammar H. Elsheikh
    Swellam W. Sharshir
    A. S. Ismail
    Ravishankar Sathyamurthy
    Talaat Abdelhamid
    Elbager M. A. Edreis
    A. E. Kabeel
    Zhang Haiou
    SN Applied Sciences, 2020, 2
  • [7] Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network
    Komeilibirjandi, Ali
    Raffiee, Amir Hossein
    Maleki, Akbar
    Alhuyi Nazari, Mohammad
    Safdari Shadloo, Mostafa
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (04) : 2679 - 2689
  • [8] Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network
    Ali Komeilibirjandi
    Amir Hossein Raffiee
    Akbar Maleki
    Mohammad Alhuyi Nazari
    Mostafa Safdari Shadloo
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 2679 - 2689
  • [9] Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids
    Longo, Giovanni A.
    Zilio, Claudio
    Ceseracciu, Elena
    Reggiani, Monica
    NANO ENERGY, 2012, 1 (02) : 290 - 296
  • [10] Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids
    Zhao, Ningbo
    Li, Zhiming
    MATERIALS, 2017, 10 (05):