Upper bounds for Euclidean minima of algebraic number fields

被引:21
|
作者
Bayer Fluckiger, Eva [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1016/j.jnt.2006.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to give new upper bounds for Euclidean minima of algebraic number fields. In particular, to show that Minkowski's conjecture holds for the maximal totally real subfields of cyclotomic fields of prime power conductor. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:305 / 323
页数:19
相关论文
共 50 条
  • [1] Euclidean minima of algebraic number fields
    Dubickas, Arturas
    Sha, Min
    Shparlinski, Igor E.
    [J]. ARCHIV DER MATHEMATIK, 2024, 122 (04) : 405 - 414
  • [2] Euclidean minima of algebraic number fields
    Artūras Dubickas
    Min Sha
    Igor E. Shparlinski
    [J]. Archiv der Mathematik, 2024, 122 : 405 - 414
  • [3] Upper bounds for the Euclidean minima of abelian fields
    Bayer-Fluckiger, Eva
    Maciak, Piotr
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (03): : 689 - 697
  • [4] Bounds for the Euclidean minima of function fields
    Maciak, Piotr
    Monsurro, Marina
    Zapponi, Leonardo
    [J]. JOURNAL OF ALGEBRA, 2014, 399 : 693 - 702
  • [5] Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor
    Bayer-Fluckiger, Eva
    Maciak, Piotr
    [J]. MATHEMATISCHE ANNALEN, 2013, 357 (03) : 1071 - 1089
  • [6] Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor
    Eva Bayer-Fluckiger
    Piotr Maciak
    [J]. Mathematische Annalen, 2013, 357 : 1071 - 1089
  • [7] COMPUTATION OF THE EUCLIDEAN MINIMUM OF ALGEBRAIC NUMBER FIELDS
    Lezowski, Pierre
    [J]. MATHEMATICS OF COMPUTATION, 2014, 83 (287) : 1397 - 1426
  • [8] Euclidean minima of totally real number fields: Algorithmic determination
    Cerri, Jean-Paul
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1547 - 1575
  • [9] Improved upper bounds for the number of rational points on algebraic curves over finite fields
    Lauter, K
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1181 - 1185
  • [10] Ideal lattices over totally real number fields and Euclidean minima
    Bayer-Fluckiger, E
    Suarez, I
    [J]. ARCHIV DER MATHEMATIK, 2006, 86 (03) : 217 - 225