Bounds for the Euclidean minima of function fields

被引:0
|
作者
Maciak, Piotr [1 ]
Monsurro, Marina [2 ]
Zapponi, Leonardo [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Univ Europea Roma, Rome, Italy
[3] Univ Paris 06, Paris, France
关键词
Function fields; Algebraic curves; Euclidean minima;
D O I
10.1016/j.jalgebra.2013.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define Euclidean minima for function fields and give some bound for this invariant. We furthermore show that the results are analogous to those obtained in the number field case. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:693 / 702
页数:10
相关论文
共 50 条
  • [1] Upper bounds for the Euclidean minima of abelian fields
    Bayer-Fluckiger, Eva
    Maciak, Piotr
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (03): : 689 - 697
  • [2] Upper bounds for Euclidean minima of algebraic number fields
    Bayer Fluckiger, Eva
    [J]. JOURNAL OF NUMBER THEORY, 2006, 121 (02) : 305 - 323
  • [3] Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor
    Bayer-Fluckiger, Eva
    Maciak, Piotr
    [J]. MATHEMATISCHE ANNALEN, 2013, 357 (03) : 1071 - 1089
  • [4] Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor
    Eva Bayer-Fluckiger
    Piotr Maciak
    [J]. Mathematische Annalen, 2013, 357 : 1071 - 1089
  • [5] Euclidean minima of algebraic number fields
    Dubickas, Arturas
    Sha, Min
    Shparlinski, Igor E.
    [J]. ARCHIV DER MATHEMATIK, 2024, 122 (04) : 405 - 414
  • [6] Euclidean minima of algebraic number fields
    Artūras Dubickas
    Min Sha
    Igor E. Shparlinski
    [J]. Archiv der Mathematik, 2024, 122 : 405 - 414
  • [7] Computation of Euclidean minima in totally definite quaternion fields
    Cerri, Jean-Paul
    Lezowski, Pierre
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (01) : 43 - 66
  • [8] EUCLIDEAN FUNCTION FIELDS
    MADAN, MI
    QUEEN, CS
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1973, 262 : 271 - 277
  • [9] Euclidean minima of totally real number fields: Algorithmic determination
    Cerri, Jean-Paul
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1547 - 1575
  • [10] EUCLIDEAN SUBRINGS OF FUNCTION FIELDS
    QUEEN, CS
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (04): : A424 - A424