Ideal lattices over totally real number fields and Euclidean minima

被引:14
|
作者
Bayer-Fluckiger, E [1 ]
Suarez, I [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math Bernoulli, CH-1015 Lausanne, Switzerland
关键词
11E12; 11H06; 11R80;
D O I
10.1007/s00013-005-1469-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:217 / 225
页数:9
相关论文
共 50 条
  • [1] Ideal lattices over totally real number fields and Euclidean minima
    Eva Bayer-Fluckiger
    Ivan Suarez
    [J]. Archiv der Mathematik, 2006, 86 : 217 - 225
  • [2] Euclidean minima of totally real number fields: Algorithmic determination
    Cerri, Jean-Paul
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1547 - 1575
  • [3] Universal positive quaternary quadratic lattices over totally real number fields
    Earnest, AG
    Khosravani, A
    [J]. MATHEMATIKA, 1997, 44 (88) : 342 - 347
  • [4] Positive semigroups in lattices and totally real number fields
    Fukshansky, Lenny
    Wang, Siki
    [J]. ADVANCES IN GEOMETRY, 2022, 22 (04) : 503 - 512
  • [6] Euclidean minima of algebraic number fields
    Dubickas, Arturas
    Sha, Min
    Shparlinski, Igor E.
    [J]. ARCHIV DER MATHEMATIK, 2024, 122 (04) : 405 - 414
  • [7] Euclidean minima of algebraic number fields
    Artūras Dubickas
    Min Sha
    Igor E. Shparlinski
    [J]. Archiv der Mathematik, 2024, 122 : 405 - 414
  • [8] Computation of Euclidean minima in totally definite quaternion fields
    Cerri, Jean-Paul
    Lezowski, Pierre
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (01) : 43 - 66
  • [9] EUCLIDEAN TOTALLY DEFINITE QUATERNION FIELDS OVER THE RATIONAL FIELD AND OVER QUADRATIC NUMBER FIELDS
    Cerri, Jean-Paul
    Chaubert, Jerome
    Lezowski, Pierre
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (03) : 653 - 673
  • [10] Jacobi forms over totally real number fields
    Skogman H.
    [J]. Results in Mathematics, 2001, 39 (1-2) : 169 - 182