An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces

被引:116
|
作者
Demlow, Alan
Dziuk, Gerhard
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Abt Angew Math, D-79104 Freiburg, Germany
关键词
Laplace-Beltrami operator; adaptive finite element methods; a posteriori error estimation; boundary value problems on surfaces;
D O I
10.1137/050642873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an adaptive finite element method for approximating solutions to the Laplace-Beltrami equation on surfaces in R-3 which may be implicitly represented as level sets of smooth functions. Residual-type a posteriori error bounds which show that the error may be split into a "residual part" and a "geometric part" are established. In addition, implementation issues are discussed and several computational examples are given.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 50 条
  • [1] On the condition number of the finite element method for the Laplace-Beltrami operator
    Nguemfouo, Marcial
    Ndjinga, Michael
    [J]. JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 59 - 86
  • [2] A stabilized cut finite element method for partial differential equations on surfaces: The Laplace-Beltrami operator
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 188 - 207
  • [3] Laplace-Beltrami Operator on Digital Surfaces
    Caissard, Thomas
    Coeurjolly, David
    Lachaud, Jacques-Olivier
    Roussillon, Tristan
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (03) : 359 - 379
  • [4] Finite element approximation of the Laplace-Beltrami operator on a surface with boundary
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    Larsson, Karl
    Massing, Andre
    [J]. NUMERISCHE MATHEMATIK, 2019, 141 (01) : 141 - 172
  • [5] VIRTUAL ELEMENT METHOD FOR THE LAPLACE-BELTRAMI EQUATION ON SURFACES
    Frittelli, Massimo
    Sgura, Ivonne
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 965 - 993
  • [6] The Laplace-Beltrami operator on surfaces with axial symmetry
    Prodan, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (18): : 4289 - 4300
  • [7] A discrete Laplace-Beltrami operator for simplicial surfaces
    Bobenko, Alexander I.
    Springborn, Boris A.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (04) : 740 - 756
  • [8] Heat Kernel Laplace-Beltrami Operator on Digital Surfaces
    Caissard, Thomas
    Coeurjolly, David
    Lachaud, Jacques-Olivier
    Roussillon, Tristan
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2017, 2017, 10502 : 241 - 253
  • [9] On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces
    Hildebrandt, Klaus
    Polthier, Konrad
    [J]. COMPUTER GRAPHICS FORUM, 2011, 30 (05) : 1513 - 1520
  • [10] Extremal metrics for eigenvalues of the Laplace-Beltrami operator on surfaces
    Penskoi, A. V.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (06) : 1073 - 1130