VIRTUAL ELEMENT METHOD FOR THE LAPLACE-BELTRAMI EQUATION ON SURFACES

被引:30
|
作者
Frittelli, Massimo [1 ]
Sgura, Ivonne [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Via Arnesano, I-73100 Lecce, Italy
关键词
Surface PDEs; Laplace-Beltrami equation; surface finite element method; Virtual Element Method; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-SIMULATION; ERROR; SCHEMES; SPHERE; MODEL;
D O I
10.1051/m2an/2017040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a Virtual Element Method (VEM) for the Laplace-Beltrami equation on a surface in R-3 , that we call Surface Virtual Element Method (SVEM). The method combines the Surface Finite Element Method (SFEM) (Dzink, Eliott, G. Dzink and C.M. Elliott., Ada Numer. 22 (2013) 289-396.) and the recent VEM (Beirada Veiga et al., Math. Mod. Methods Appl. Sci. 23 (2013) 199-214.) in order to allow for a general polygonal approximation of the surface. We account for the error arising from the geometry approximation and in the case of polynomial order k = 1 we extend to surfaces the error estimates for the interpolation in the virtual element space. We prove existence, uniqueness and first order H-1 convergence of the numerical solution.We highlight the differences between SVEM and VEM from the implementation point of view. Moreover, we show that the capability of SVEM of handling nonconforming and discontinuous meshes can be exploited in the case of surface pasting. We provide some numerical experiments to confirm the convergence result and to show an application of mesh pasting.
引用
收藏
页码:965 / 993
页数:29
相关论文
共 50 条