Finite element approximation of the Laplace-Beltrami operator on a surface with boundary

被引:14
|
作者
Burman, Erik [1 ]
Hansbo, Peter [2 ]
Larson, Mats G. [3 ]
Larsson, Karl [3 ]
Massing, Andre [3 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] Jonkoping Univ, Dept Mech Engn, S-55111 Jonkoping, Sweden
[3] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
基金
瑞典研究理事会; 英国工程与自然科学研究理事会;
关键词
DISCONTINUOUS GALERKIN METHOD; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.1007/s00211-018-0990-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a finite element method for the Laplace-Beltrami operator on a surface with boundary and nonhomogeneous Dirichlet boundary conditions. The method is based on a triangulation of the surface and the boundary conditions are enforced weakly using Nitsche's method. We prove optimal order a priori error estimates for piecewise continuous polynomials of order k1 in the energy and L2 norms that take the approximation of the surface and the boundary into account.
引用
收藏
页码:141 / 172
页数:32
相关论文
共 50 条