Performance of Sphere Decoding of Block Codes

被引:21
|
作者
El-Khamy, Mostafa [1 ]
Vikalo, Haris [2 ]
Hassibi, Babak [3 ]
McEliece, Robert J. [3 ]
机构
[1] Univ Alexandria, Dept Elect Engn, Alexandria, Egypt
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
关键词
Maximum likelihood decoding; sphere decoding; performance bounds; Reed-Solomon codes; block codes; decoding radius; symmetric channels; ERROR-PROBABILITY; REED-SOLOMON; LATTICE; SEARCH; BOUNDS;
D O I
10.1109/TCOMM.2009.10.080402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A sphere decoder searches for the closest lattice point within a certain search radius. The search radius provides a tradeoff between performance and complexity. We focus on analyzing the performance of sphere decoding of linear block codes. We analyze the performance of soft-decision sphere decoding on AWGN channels and a variety of modulation schemes. A hard-decision sphere decoder is a bounded distance decoder with the corresponding decoding radius. We analyze the performance of hard-decision sphere decoding on binary and q-ary symmetric channels. An upper bound on the. performance of maximum-likelihood decoding of linear codes defined over F-q (e.g. Reed-Solomon codes) and transmitted over q-ary symmetric channels is derived and used in the analysis. We then discuss sphere decoding of general block codes or lattices with arbitrary modulation schemes. The tradeoff between the performance and complexity of a sphere decoder is then discussed.
引用
收藏
页码:2940 / 2950
页数:11
相关论文
共 50 条
  • [21] Trellis decoding of linear block codes
    Büttner, WH
    Staphorst, L
    Linde, LP
    [J]. PROCEEDINGS OF THE 1998 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING: COMSIG '98, 1998, : 171 - 174
  • [22] TRELLIS STRUCTURES OF BLOCK CODES AND THEIR DECODING
    Ma Jianfeng Wang Yumin Lei Zhenjia(Dept. of Comput. Sci.
    [J]. Journal of Electronics(China), 1997, (03) : 241 - 246
  • [23] Decoding of multilevel block modulation codes
    Saifuddin, A
    [J]. IEE PROCEEDINGS-COMMUNICATIONS, 1995, 142 (06): : 341 - 344
  • [24] Efficient Decoding of Block Turbo Codes
    Son, Jaeyong
    Kong, Jun Jin
    Yang, Kyeongcheol
    [J]. JOURNAL OF COMMUNICATIONS AND NETWORKS, 2018, 20 (04) : 345 - 353
  • [25] A* decoding of block codes with general threshold
    Chen, J
    Wang, YQ
    Wang, XM
    Cao, ZG
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2002, 11 (01) : 144 - 146
  • [26] Trellis decoding of linear block codes
    Univ of Pretoria, Pretoria, South Africa
    [J]. Proc S Afr Symp Commun Signal Process, (171-174):
  • [27] Block Sequential Decoding of Polar Codes
    Trofimiuk, Grigorii
    Trifonov, Peter
    [J]. 2015 12TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2015,
  • [28] Turbo decoding of linear block codes
    Yue, DW
    Shwedyk, E
    [J]. 2001 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS I AND II, CONFERENCE PROCEEDINGS, 2001, : 107 - 110
  • [29] A new decoding algorithm for complete decoding of linear block codes
    Han, YS
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (04) : 664 - 671
  • [30] Perfect space-time block codes and high performance decoding algorithm
    Hu, Jun-Feng
    Yang, Yuan
    Zhang, Hai-Lin
    [J]. Tongxin Xuebao/Journal on Communications, 2007, 28 (06): : 54 - 61