Inverse opal structure of SnO2 and SnO2:Zn for gas sensing

被引:0
|
作者
Baratto, C [1 ]
Faglia, G [1 ]
Sberveglieri, G [1 ]
Sutti, A [1 ]
Calestani, G [1 ]
Dionigi, C [1 ]
机构
[1] CNR, INFM, Dept Chem & Phys, Brescia, Italy
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In the present work we propose a low cost synthetic sol-gel route that allows to produce high quality oxide narrostructures with inverse opal architecture which, transferred on alumina substrates provided with Pt interdigitated contacts and heater, are tested as gas sensing devices. An opal template of sintered monodisperse polystyrene spheres was filled with alcoholic solutions of metal oxide precursors and transferred on the alumina substrate. The polystyrene template was removed by thermal treatment, leading to the simultaneous sintering of the oxide nanoparticles. Beside SnO2 ,a binary oxide well known for gas sensing application, a Zn containing ternary solid solution (SnO2:Zn, with Zn 10% molar content)was taken into account for sensor preparation. The obtained high quality macro and meso-porous structures,characterized by different techniques, were tested for pollutant(CO, NO2) and interfering(m ethanol) gases, showing that very good detection can be reached through the increase of surface area offered by the inverse opal structure and the tailoring of the chemical composition. The electrical characterization performed on the tin dioxide based sensors shows an enhancement of the relative response towards NO2 at low temperatures in comparison with conventional SnO2 sensors obtained with sputtering technique. The addition of Zn increases the separation between the operating temperatures for reducing and oxidizing gases and results in a further enhancement of the selectivity to NO2 detection.
引用
收藏
页码:1196 / 1200
页数:5
相关论文
共 50 条
  • [31] Interfacial structure of nanocrystalline SnO2 and SiO2-doped SnO2
    Wu, YC
    Zheng, YF
    Lin, DM
    Su, AG
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 1999, 15 (04) : 388 - 388
  • [32] Enhanced triethylamine gas sensing performance of the porous Zn2SnO4/SnO2 hierarchical microspheres
    Zhang, Saisai
    Sun, Guang
    Li, Yanwei
    Zhang, Bo
    Wang, Yan
    Zhang, Zhanying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 785 : 382 - 390
  • [33] Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO
    Duoc, Vo Thanh
    Hung, Chu Manh
    Nguyen, Hugo
    Van Duy, Nguyen
    Van Hieu, Nguyen
    Hoa, Nguyen Duc
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 348 (348):
  • [34] SnO2, SnO2/Ag and Ag/SnO2 thin rilms used as propane sensors
    Aguilar, J
    de la L Olvera, M
    Maldonado, A
    2005 2nd International Conference on Electrical & Electronics Engineering (ICEEE), 2005, : 250 - 253
  • [35] Gas-sensing characteristics of undoped-SnO2 thin films and Ag/SnO2 and SnO2/Ag structures in a propane atmosphere
    Aguilar-Leyva, J.
    Maldonado, A.
    Olvera, M. de la L.
    MATERIALS CHARACTERIZATION, 2007, 58 (8-9) : 740 - 744
  • [36] SnO2 Nanoslab as NO2 Sensor: Identification of the NO2 Sensing Mechanism on a SnO2 Surface
    Maeng, Sunglyul
    Kim, Sang-Woo
    Lee, Deuk-Hee
    Moon, Seung-Eon
    Kim, Ki-Chul
    Maiti, Amitesh
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) : 357 - 363
  • [37] Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
    Nikolic, Maria Vesna
    Dojcinovic, Milena
    Vasiljevic, Zorka Z.
    Lukovic, Miloljub D.
    Labus, Nebojsa J.
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (IEEE FLEPS 2019), 2019,
  • [38] Nanocomposite Zn2SnO4/SnO2 Thick Films as a Humidity Sensing Material
    Nikolic, Maria Vesna
    Dojcinovic, Milena P.
    Vasiljevic, Zorka Z.
    Lukovic, Miloljub D.
    Labus, Nebojsa J.
    IEEE SENSORS JOURNAL, 2020, 20 (14) : 7509 - 7516
  • [39] Enhanced formaldehyde sensing properties of SnO2 nanorods coupled with Zn2SnO4
    Xiao, Xuechun
    Xing, Xinxin
    Han, Bingqian
    Deng, Dongyang
    Cai, Xiaoyan
    Wang, Yude
    RSC ADVANCES, 2015, 5 (53): : 42628 - 42636
  • [40] Enhancing the photoconductivity and gas sensing performance of TiO2/ SnO2 heterostructures tuned by the thickness of the SnO2 upper layer
    Pari, S. A. De la Torre
    Aquino, J. C. R.
    Carlos-Chilo, A. F.
    Guerra, J. A.
    Coaquira, J. A. H.
    Pacheco-Salazar, D. G.
    Felix, J. F.
    Solis, J. L.
    Aragon, F. F. H.
    APPLIED SURFACE SCIENCE, 2023, 613