Spatial scale effects on model parameter estimation and predictive uncertainty in ungauged basins

被引:8
|
作者
Hughes, Denis A. [1 ]
Kapangaziwiri, Evison [2 ]
Tanner, Jane [1 ]
机构
[1] Rhodes Univ, Inst Water Res, ZA-6140 Grahamstown, South Africa
[2] CSIR, ZA-0001 Pretoria, South Africa
来源
HYDROLOGY RESEARCH | 2013年 / 44卷 / 03期
关键词
hydrological models; parameter estimation; spatial scale; uncertainty; ungauged basins; RUNOFF; EQUIFINALITY; PERFORMANCE; CALIBRATION; HYDROLOGY;
D O I
10.2166/nh.2012.049
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The most appropriate scale to use for hydrological modelling depends on the model structure, the purpose of the results and the resolution of available data used to quantify parameter values and provide the climatic forcing. There is little consensus amongst the community of model users on the appropriate model complexity and number of model parameters that are needed for satisfactory simulations. These issues are not independent of modelling scale, the methods used to quantify parameter values, nor the purpose of use of the simulations. This paper reports on an investigation of spatial scale effects on the application of an approach to quantify the parameter values (with uncertainty) of a rainfall-runoff model with a relatively large number of parameters. The quantification approach uses estimation equations based on physical property data and is applicable to gauged and ungauged basins. Within South Africa the physical property data are available at a finer spatial resolution than is typically used for hydrological modelling. The results suggest that reducing the model spatial scale offers some advantages. Potential disadvantages are related to the need for some subjective interpretation of the available physical property data, as well as inconsistencies in some of the parameter estimation equations.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 50 条
  • [41] Optimal parameter and uncertainty estimation of a land surface model: Sensitivity to parameter ranges and model complexities
    Youlong Xia
    Zong-Liang Yang
    Paul L. Stoffa
    Mrinal K. Sen
    [J]. Advances in Atmospheric Sciences, 2005, 22 : 142 - 157
  • [42] Spatial Interpolation of Annual Runoff in Ungauged Basins Based on the Improved Information Diffusion Model Using a Genetic Algorithm
    Hong, Mei
    Zhang, Ren
    Wang, Dong
    Qian, Longxia
    Hu, Zhenghua
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [43] Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures
    Biondi, Daniela
    De Luca, Davide Luciano
    [J]. NATURAL HAZARDS, 2015, 79 (02) : 1015 - 1038
  • [44] Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures
    Daniela Biondi
    Davide Luciano De Luca
    [J]. Natural Hazards, 2015, 79 : 1015 - 1038
  • [45] Reducing Range Estimation Uncertainty with a Hybrid Powertrain Model and Online Parameter Estimation
    Sautermeister, Stefan
    Ott, Florian
    Vaillant, Moritz
    Gauterin, Frank
    [J]. 2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [46] Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty
    Hossain, F
    Anagnostou, EN
    Dinku, T
    Borga, M
    [J]. HYDROLOGICAL PROCESSES, 2004, 18 (17) : 3277 - 3291
  • [47] Effect of mountainous rainfall on uncertainty in flood model parameter estimation
    Lee, Jeonghoon
    Choi, Jeonghyeon
    Jang, Suhyung
    Kim, Sangdan
    [J]. HYDROLOGY RESEARCH, 2024, 55 (02): : 221 - 236
  • [48] Sensitivity analysis for a thermohydrodynamic model: Uncertainty analysis and parameter estimation
    Fiorini, Camilla
    Puscas, Maria Adela
    Despres, Bruno
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 : 25 - 33
  • [49] Option pricing under model and parameter uncertainty using predictive densities
    Bunnin, FO
    Guo, Y
    Ren, Y
    [J]. STATISTICS AND COMPUTING, 2002, 12 (01) : 37 - 44
  • [50] Option pricing under model and parameter uncertainty using predictive densities
    F. O. Bunnin
    Y. Guo
    Y. Ren
    [J]. Statistics and Computing, 2002, 12 : 37 - 44