Spatial scale effects on model parameter estimation and predictive uncertainty in ungauged basins

被引:8
|
作者
Hughes, Denis A. [1 ]
Kapangaziwiri, Evison [2 ]
Tanner, Jane [1 ]
机构
[1] Rhodes Univ, Inst Water Res, ZA-6140 Grahamstown, South Africa
[2] CSIR, ZA-0001 Pretoria, South Africa
来源
HYDROLOGY RESEARCH | 2013年 / 44卷 / 03期
关键词
hydrological models; parameter estimation; spatial scale; uncertainty; ungauged basins; RUNOFF; EQUIFINALITY; PERFORMANCE; CALIBRATION; HYDROLOGY;
D O I
10.2166/nh.2012.049
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The most appropriate scale to use for hydrological modelling depends on the model structure, the purpose of the results and the resolution of available data used to quantify parameter values and provide the climatic forcing. There is little consensus amongst the community of model users on the appropriate model complexity and number of model parameters that are needed for satisfactory simulations. These issues are not independent of modelling scale, the methods used to quantify parameter values, nor the purpose of use of the simulations. This paper reports on an investigation of spatial scale effects on the application of an approach to quantify the parameter values (with uncertainty) of a rainfall-runoff model with a relatively large number of parameters. The quantification approach uses estimation equations based on physical property data and is applicable to gauged and ungauged basins. Within South Africa the physical property data are available at a finer spatial resolution than is typically used for hydrological modelling. The results suggest that reducing the model spatial scale offers some advantages. Potential disadvantages are related to the need for some subjective interpretation of the available physical property data, as well as inconsistencies in some of the parameter estimation equations.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 50 条
  • [31] Ellipsoidal parameter or state estimation under model uncertainty
    Polyak, BT
    Nazin, SA
    Durieu, C
    Walter, E
    [J]. AUTOMATICA, 2004, 40 (07) : 1171 - 1179
  • [32] Estimation of parameter uncertainty using inverse model sensitivities
    Vesselinov, VV
    [J]. COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, 2004, 55 : 1243 - 1250
  • [33] PARAMETER-ESTIMATION OF SPATIAL AR MODEL
    JIANG, JM
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 1991, 12 (04) : 432 - 444
  • [34] The effects of spatial and temporal uncertainty on the generation of predictive saccades
    Anderson, T
    Ko, D
    MacAskill, M
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 2005, 238 : S332 - S332
  • [35] Economic model predictive control of chemical processes with parameter uncertainty
    Santander, Omer
    Elkamel, Ali
    Budman, Hector
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2016, 95 : 10 - 20
  • [36] Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy
    Biondi, Daniela
    De Luca, Davide Luciano
    [J]. HYDROLOGY RESEARCH, 2017, 48 (03): : 714 - 725
  • [37] Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty
    Guzman, Rel
    Oliveira, Rafael
    Ramos, Fabio
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5539 - 5545
  • [38] Tradeoffs Between Temporal and Spatial Pattern Calibration and Their Impacts on Robustness and Transferability of Hydrologic Model Parameters to Ungauged Basins
    Demirel, M. C.
    Koch, J.
    Rakovec, O.
    Kumar, R.
    Mai, J.
    Mueller, S.
    Thober, S.
    Samaniego, L.
    Stisen, S.
    [J]. WATER RESOURCES RESEARCH, 2024, 60 (01)
  • [39] Optimal parameter and uncertainty estimation of a land surface model: Sensitivity to parameter ranges and model complexities
    Xia, YL
    Yang, ZL
    Stoffa, PL
    Sen, MK
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2005, 22 (01) : 142 - 157
  • [40] Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities
    Paul L.STOFFA
    Mrinal K.SEN
    [J]. Advances in Atmospheric Sciences, 2005, (01) : 142 - 157