Two sharp double inequalities for Seiffert mean

被引:27
|
作者
Chu, Yu-Ming [1 ]
Wang, Miao-Kun [1 ]
Gong, Wei-Ming [2 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Hunan City Univ, Dept Math, Yiyang 413000, Peoples R China
关键词
Root-square mean; arithmetic mean; Seiffert mean; BOUNDS;
D O I
10.1186/1029-242X-2011-44
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish two new inequalities between the root-square, arithmetic, and Seiffert means. The achieved results are inspired by the paper of Seiffert (Die Wurzel, 29, 221-222, 1995), and the methods from Chu et al. (J. Math. Inequal., 4, 581-586, 2010). The inequalities we obtained improve the existing corresponding results and, in some sense, are optimal.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] SHARP OPERATOR MEAN INEQUALITIES OF THE NUMERICAL RADII
    Jafarmanesh, Hosna
    Khosravi, Maryam
    [J]. OPERATORS AND MATRICES, 2021, 15 (02): : 423 - 433
  • [32] Two sharp inequalities and applications
    Ujevic, N
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2005, 7 (02) : 187 - 203
  • [33] Sharp Bounds for the Weighted Geometric Mean of the First Seiffert and Logarithmic Means in terms of Weighted Generalized Heronian Mean
    Matejicka, Ladislav
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] SHARP INEQUALITIES RELATED TO ONE-PARAMETER MEAN AND GINI MEAN
    Gao, Hongya
    Niu, Wenjuan
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 545 - 555
  • [35] Sharp Sobolev inequalities in Lorentz spaces for a mean oscillation
    Ioku, Norisuke
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2944 - 2958
  • [36] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Ling Zhu
    Branko Malešević
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [37] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Zhu, Ling
    Malesevic, Branko
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [38] Sharp stability inequalities for planar double bubbles
    Cicalese, Marco
    Leonardi, Gian Paolo
    Maggi, Francesco
    [J]. INTERFACES AND FREE BOUNDARIES, 2017, 19 (03) : 305 - 350
  • [39] Two Sharp Perturbed Midpoint Inequalities
    Shi, Yanxia
    Tao, Yumin
    Pan, Yu
    [J]. MECHANICAL SCIENCE AND ENGINEERING IV, 2014, 472 : 527 - 531
  • [40] SEIFFERT MEANS, ASYMPTOTIC EXPANSIONS AND INEQUALITIES
    Vuksic, Lenka
    [J]. RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2015, 19 (523): : 129 - 142