SHARP OPERATOR MEAN INEQUALITIES OF THE NUMERICAL RADII

被引:1
|
作者
Jafarmanesh, Hosna [1 ]
Khosravi, Maryam [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, POB 397, Sabzevar, Iran
[2] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Pure Math, Kerman, Iran
来源
OPERATORS AND MATRICES | 2021年 / 15卷 / 02期
关键词
Numerical radius; operator norm; inequality; refine;
D O I
10.7153/oam-2021-15-29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present several sharp upper bounds and some extension for product operators. Among other inequalities, it is shown that if 0 < mI <= B* f(2) (vertical bar X vertical bar)B, A*g(2)(X-vertical bar*vertical bar) A <= MI, f, g are non-negative continuous functions on [0,8) such that f(t)g(t) = t, (t >= 0), then for all non-negative operator monotone decreasing function h on [0,infinity), we obtain that parallel to h(B* f(2)(vertical bar X vertical bar)B sigma h (A*g(2)(vertical bar X*vertical bar)parallel to <= mk/M h(vertical bar <(A*XB)x, x >vertical bar). As an application of the above inequality, it is shown that omega(A*XB) <= mk/M parallel to B*f(2)(vertical bar X vertical bar)BIA*g(2)(vertical bar X vertical bar)A parallel to where, k = (M+m)(2)/4mM and sigma is an operator mean s. t., ! <= sigma <= del.
引用
收藏
页码:423 / 433
页数:11
相关论文
共 50 条
  • [1] Sharp Inequalities for the Numerical Radii of Block Operator Matrices
    M. Ghaderi Aghideh
    M. S. Moslehian
    J. Rooin
    [J]. Analysis Mathematica, 2019, 45 : 687 - 703
  • [2] Sharp Inequalities for the Numerical Radii of Block Operator Matrices
    Aghideh, M. Ghaderi
    Moslehian, M. S.
    Rooin, J.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (04) : 687 - 703
  • [3] Inequalities for norms and numerical radii of operator matrices
    Kittaneh, Fuad
    Rashid, M. H. M.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)
  • [4] SHARP INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS AND OPERATOR MATRICES
    Bhunia, Pintu
    Paul, Kallol
    Nayak, Raj Kumar
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (01): : 167 - 183
  • [5] New sharp inequalities for operator means
    Furuichi, Shigeru
    Moradi, Hamid Reza
    Sababheh, Mohammad
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (08): : 1567 - 1578
  • [6] Sharp inequalities for some operator means
    Drissi, Driss
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (03) : 822 - 828
  • [7] Divergent operator with degeneracy and related sharp inequalities
    Dou, Jingbo
    Sun, Liming
    Wang, Lei
    Zhu, Meijun
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
  • [8] Two Sharp Inequalities for Power Mean, Geometric Mean, and Harmonic Mean
    Chu, Yu-Ming
    Xia, Wei-Feng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [9] TWO SHARP INEQUALITIES FOR LEHMER MEAN, IDENTRIC MEAN AND LOGARITHMIC MEAN
    Qiu, Ye-Fang
    Wang, Miao-Kun
    Chu, Yu-Ming
    Wang, Gen-Di
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (03): : 301 - 306
  • [10] Two Sharp Inequalities for Power Mean, Geometric Mean, and Harmonic Mean
    Yu-Ming Chu
    Wei-Feng Xia
    [J]. Journal of Inequalities and Applications, 2009