Model selection for ecologists: the worldviews of AIC and BIC

被引:763
|
作者
Aho, Ken [1 ]
Derryberry, DeWayne [2 ]
Peterson, Teri [3 ]
机构
[1] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA
[2] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA
[3] Idaho State Univ, Div Hlth Sci, Pocatello, ID 83209 USA
关键词
MULTIMODEL INFERENCE; VARIABLE SELECTION; BAYES FACTORS; REGRESSION; ORDER; CRITERION; TESTS;
D O I
10.1890/13-1452.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
[No abstract available]
引用
收藏
页码:631 / 636
页数:6
相关论文
共 50 条
  • [31] Evaluating the performance of AIC and BIC for selecting spatial econometric models
    Christos Agiakloglou
    Apostolos Tsimpanos
    [J]. Journal of Spatial Econometrics, 2023, 4 (1):
  • [32] CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers
    Kirsten Bulteel
    Tom F. Wilderjans
    Francis Tuerlinckx
    Eva Ceulemans
    [J]. Behavior Research Methods, 2013, 45 : 782 - 791
  • [33] How Certain are You of Your Minimum AIC or BIC Values?
    Jayaweera, I. M. L. Nadeesha
    Trindade, A. Alexandre
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (02): : 880 - 919
  • [34] Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock-recruitment relationships
    Wang, YJ
    Liu, Q
    [J]. FISHERIES RESEARCH, 2006, 77 (02) : 220 - 225
  • [35] CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers
    Bulteel, Kirsten
    Wilderjans, Tom F.
    Tuerlinckx, Francis
    Ceulemans, Eva
    [J]. BEHAVIOR RESEARCH METHODS, 2013, 45 (03) : 782 - 791
  • [36] A LASSO-penalized BIC for mixture model selection
    Bhattacharya, Sakyajit
    McNicholas, Paul D.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (01) : 45 - 61
  • [37] BIC Extensions for Order-constrained Model Selection
    Mulder, J.
    Raftery, A. E.
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2022, 51 (02) : 471 - 498
  • [38] A LASSO-penalized BIC for mixture model selection
    Sakyajit Bhattacharya
    Paul D. McNicholas
    [J]. Advances in Data Analysis and Classification, 2014, 8 : 45 - 61
  • [39] EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application
    Wu, Ze-xiang
    Ji, Hui
    Yu, Chuang
    Zhou, Cheng
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2018, 19 (03): : 211 - 224
  • [40] Change-point model selection via AIC
    Ninomiya, Yoshiyuki
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (05) : 943 - 961