The continuum parabolic Anderson model with a half-Laplacian and periodic noise

被引:0
|
作者
Dunlap, Alexander [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
parabolic Anderson model; fractional Laplacian;
D O I
10.1214/20-ECP342
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct solutions of a renormalized continuum fractional parabolic Anderson model, formally given by partial derivative(t)u = -(-Delta)(1/2) u + xi u, where xi is a periodic spatial white noise. To be precise, we construct limits as epsilon -> 0 of solutions of partial derivative(t)u(epsilon) = -(-Delta)(1/2)u(epsilon) + (xi(epsilon) - C-epsilon)u(epsilon), where xi(epsilon) is a mollification of xi at scale epsilon and C-epsilon is a logarithmically diverging renormalization constant. We use a simple renormalization scheme based on that of Hairer and Labbe, "A simple construction of the continuum parabolic Anderson model on R-2."
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] Hubbard physics in the symmetric half-filled periodic anderson-hubbard model
    I. Hagymási
    K. Itai
    J. Sólyom
    [J]. Journal of the Korean Physical Society, 2013, 62 : 1423 - 1426
  • [42] Time correlations for the parabolic Anderson model
    Gaertner, Juergen
    Schnitzler, Adrian
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1519 - 1548
  • [43] The parabolic Anderson model on Riemann surfaces
    Antoine Dahlqvist
    Joscha Diehl
    Bruce K. Driver
    [J]. Probability Theory and Related Fields, 2019, 174 : 369 - 444
  • [44] The Parabolic Anderson Model with Acceleration and Deceleration
    [J]. König, W. (koenig@wias-berlin.de), 1600, Springer Verlag (11):
  • [45] STATIONARY PARABOLIC ANDERSON MODEL AND INTERMITTENCY
    CARMONA, RA
    MOLCHANOV, SA
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (04) : 433 - 453
  • [46] The parabolic Anderson model on Riemann surfaces
    Dahlqvist, Antoine
    Diehl, Joscha
    Driver, Bruce K.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (1-2) : 369 - 444
  • [47] On large deviations for the parabolic Anderson model
    M. Cranston
    D. Gauthier
    T. S. Mountford
    [J]. Probability Theory and Related Fields, 2010, 147 : 349 - 378
  • [48] Ferromagnetism in the periodic Anderson model
    Meyer, D
    Nolting, W
    [J]. PHYSICA B-CONDENSED MATTER, 1999, 259-61 : 918 - 919
  • [49] Supersolid in the periodic Anderson model
    Cuoco, M
    Noce, C
    [J]. PHYSICAL REVIEW B, 1999, 59 (23): : 14831 - 14832
  • [50] ON THE SUSCEPTIBILITY OF THE PERIODIC ANDERSON MODEL
    ELK, K
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 109 (01): : 217 - 222