Fast Computation of Rotation-Invariant Image Features by an Approximate Radial Gradient Transform

被引:42
|
作者
Takacs, Gabriel [1 ]
Chandrasekhar, Vijay [2 ]
Tsai, Sam S. [2 ]
Chen, David [2 ]
Grzeszczuk, Radek [1 ]
Girod, Bernd [2 ]
机构
[1] Microsoft Corp, Sunnyvale, CA 94089 USA
[2] Stanford Univ, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Computer vision; signal processing; real-time systems; feature representation; invariants;
D O I
10.1109/TIP.2012.2230011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the radial gradient transform (RGT) and a fast approximation, the approximate RGT (ARGT). We analyze the effects of the approximation on gradient quantization and histogramming. The ARGT is incorporated into the rotation-invariant fast feature (RIFF) algorithm. We demonstrate that, using the ARGT, RIFF extracts features 16x faster than SURF while achieving a similar performance for image matching and retrieval.
引用
收藏
页码:2970 / 2982
页数:13
相关论文
共 50 条
  • [31] Rotation-invariant pattern recognition using a joint transform correlator
    Chang, SD
    Boothroyd, S
    Palacharla, P
    Pachanathan, S
    OPTICS COMMUNICATIONS, 1996, 127 (1-3) : 107 - 116
  • [32] SAR image matching based on rotation-invariant description
    Yunhao Chang
    Qing Xu
    Xin Xiong
    Guowang Jin
    Huitai Hou
    Dan Man
    Scientific Reports, 13
  • [33] Texture analysis of an image by using a rotation-invariant model
    Rosenberger, C
    Chehdi, K
    Cariou, C
    Ogier, JM
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3289 - 3292
  • [34] Rotation-Invariant Categorization of Colour Images using the Radon Transform
    Paplinski, Andrew P.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [35] ROTATION-INVARIANT IMAGE RECOGNITION AT LOW LIGHT LEVELS
    ISBERG, TA
    MORRIS, GM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (07): : 954 - 963
  • [36] Image classification with rotation-invariant variational quantum circuits
    Sein, Paul San Sebastian
    Canizo, Mikel
    Orus, Roman
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [37] Multispectral Image Matching Using Rotation-Invariant Distance
    Li, Qiaoliang
    Zhang, Huisheng
    Wang, Tianfu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 406 - 410
  • [38] Rotation-invariant fast features for large-scale recognition and real-time tracking
    Takacs, Gabriel
    Chandrasekhar, Vijay
    Tsai, Sam
    Chen, David
    Grzeszczuk, Radek
    Girod, Bernd
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (04) : 334 - 344
  • [39] Sub-Gaussian rotation-invariant features for steerable wavelet-based image retrieval
    Tzagkarakis, G
    Beferull-Lozano, B
    Tsakalides, P
    CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 397 - 401
  • [40] Rotation-invariant features based on directional coding for texture classification
    Farida Ouslimani
    Achour Ouslimani
    Zohra Ameur
    Neural Computing and Applications, 2019, 31 : 6393 - 6400