Rotation-invariant fast features for large-scale recognition and real-time tracking

被引:9
|
作者
Takacs, Gabriel [1 ]
Chandrasekhar, Vijay [1 ]
Tsai, Sam [1 ]
Chen, David [1 ]
Grzeszczuk, Radek
Girod, Bernd [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
Feature descriptors; Keypoints; Tracking; Visual search;
D O I
10.1016/j.image.2012.11.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an end-to-end feature description pipeline which uses a novel interest point detector and rotation-invariant fast feature (RIFF) descriptors. The proposed RIFF algorithm is 15 x faster than SURF [1] while producing large-scale retrieval results that are comparable to SIFT [2]. Such high-speed features benefit a range of applications from mobile augmented reality (MAR) to web-scale image retrieval and analysis. In particular, RIFF enables unified tracking and recognition for MAR. (c) 2013 Published by Elsevier B.V.
引用
收藏
页码:334 / 344
页数:11
相关论文
共 50 条
  • [1] Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features
    Takacs, Gabriel
    Chandrasekhar, Vijay
    Tsai, Sam
    Chen, David
    Grzeszczuk, Radek
    Girod, Bernd
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 934 - 941
  • [2] Rotation-Invariant Fast Features for Large-Scale Recognition
    Takacs, Gabriel
    Chandrasekhar, Vijay
    Tsai, Sam
    Chen, David
    Grzeszczuk, Radek
    Girod, Bernd
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXV, 2012, 8499
  • [3] Real-time tracking based on rotation-invariant descriptors
    Miramontes-Jaramillo, Daniel
    Kober, Vitaly
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2015, : 543 - 546
  • [4] Lightweight and rotation-invariant place recognition network for large-scale raw point clouds
    Zhang, Zhenghua
    Liu, Hu
    Wang, Xuan
    Shu, Mingcong
    Chen, Guoliang
    Zhang, Qiuzhao
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 212 : 58 - 72
  • [5] Real-time recognition of large-scale driving patterns
    Engström, J
    Victor, T
    [J]. 2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 1018 - 1023
  • [6] New rotation-invariant features for radar target recognition
    Spoelstra, J
    Botha, EC
    [J]. SIGNAL PROCESSING, 1996, 55 (03) : 351 - 367
  • [7] Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks
    Shi, Xuepeng
    Shan, Shiguang
    Kan, Meina
    Wu, Shuzhe
    Chen, Xilin
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2295 - 2303
  • [8] ROBUST REAL-TIME AND ROTATION-INVARIANT AMERICAN SIGN LANGUAGE ALPHABET RECOGNITION USING RANGE CAMERA
    Lahamy, H.
    Lichti, D.
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION V, 2012, 39-B5 : 217 - 222
  • [9] Towards Real-Time and Rotation-Invariant American Sign Language Alphabet Recognition Using a Range Camera
    Lahamy, Herve
    Lichti, Derek D.
    [J]. SENSORS, 2012, 12 (11) : 14416 - 14441
  • [10] LARGE-SCALE, REAL-TIME LOGO RECOGNITION IN BROADCAST VIDEOS
    Natarajan, Pradeep
    Wu, Yue
    Saleem, Shirin
    Macrostie, Ehry
    Bernardin, Fred
    Prasad, Rohit
    Natarajan, Prem
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,