Multiscale coupling using a finite element framework at finite temperature

被引:15
|
作者
Iacobellis, Vincent [1 ]
Behdinan, Kamran [1 ]
机构
[1] Univ Toronto, Fac Appl Sci & Engn, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
基金
欧盟地平线“2020”;
关键词
multiscale; finite element methods; molecular mechanics; fracture; nanomechanics; MOLECULAR-DYNAMICS; CRACK-PROPAGATION; LENGTH SCALES; VOID GROWTH; CONTINUUM; SIMULATION; MECHANICS; FRACTURE; COPPER; MODEL;
D O I
10.1002/nme.4355
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the formulation and application of a multiscale methodology that couples three domains using a finite element framework. The proposed method efficiently models atomistic systems by decomposing the system into continuum, bridging, and atomistic domains. The atomistic and bridging domains are solved using a combined finite elementmolecular mechanics simulation where the system is discretized into atom/nodal centric elements based on the atomic scale finite element method. Coupling between the atomistic domain and continuum domain is performed through the bridging cells, which contain locally formulated atoms whose displacements are mapped to the nodes of the bridging cell elements. The method implements a temperature-dependent potential for finite temperature simulations. Validation and demonstration of the methodology are provided through three case studies: displacement in a one-dimensional chain, stress around nanoscale voids, and fracture. From these studies differences between multiscale and fully atomistic simulations were very small with the simulation time of the proposed methodology being approximately a tenth of the time of the fully atomistic model. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:652 / 670
页数:19
相关论文
共 50 条
  • [31] Coupling extended multiscale finite element method for thermoelastic analysis of heterogeneous multiphase materials
    Zhang, S.
    Yang, D. S.
    Zhang, H. W.
    Zheng, Y. G.
    [J]. COMPUTERS & STRUCTURES, 2013, 121 : 32 - 49
  • [32] A coupling extended multiscale finite element and peridynamic method for modeling of crack propagation in solids
    Hongwu Zhang
    Hui Li
    Hongfei Ye
    Yonggang Zheng
    Yixiong Zhang
    [J]. Acta Mechanica, 2019, 230 : 3667 - 3692
  • [33] Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media
    Zhang, H. W.
    Fu, Z. D.
    Wu, J. K.
    [J]. ADVANCES IN WATER RESOURCES, 2009, 32 (02) : 268 - 279
  • [34] A coupling extended multiscale finite element and peridynamic method for modeling of crack propagation in solids
    Zhang, Hongwu
    Li, Hui
    Ye, Hongfei
    Zheng, Yonggang
    Zhang, Yixiong
    [J]. ACTA MECHANICA, 2019, 230 (10) : 3667 - 3692
  • [35] Osteocyte lacunar strain determination using multiscale finite element analysis
    Kola, Sravan K.
    Begonia, Mark T.
    Tiede-Lewis, Leann M.
    Laughrey, Loretta E.
    Dallas, Sarah L.
    Johnson, Mark L.
    Ganesh, Thiagarajan
    [J]. BONE REPORTS, 2020, 12
  • [36] Efficient structure topology optimization by using the multiscale finite element method
    Hui Liu
    Yiqiang Wang
    Hongming Zong
    Michael Yu Wang
    [J]. Structural and Multidisciplinary Optimization, 2018, 58 : 1411 - 1430
  • [37] Convergence of a nonconforming multiscale finite element method
    Efendiev, YR
    Hou, TY
    Wu, XH
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 888 - 910
  • [38] MIXED MULTISCALE FINITE ELEMENT METHODS USING LIMITED GLOBAL INFORMATION
    Aarnes, J. E.
    Efendiev, Y.
    Jiang, L.
    [J]. MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 655 - 676
  • [39] A Large Strains Finite Element Multiscale Approach
    Molina, A. J. Carneiro
    Curiel-Sosa, J. L.
    [J]. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2016, 17 (01): : 46 - 58
  • [40] Efficient structure topology optimization by using the multiscale finite element method
    Liu, Hui
    Wang, Yiqiang
    Zong, Hongming
    Wang, Michael Yu
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (04) : 1411 - 1430