Multistep Inference for Generalized Linear Spiking Models Curbs Runaway Excitation

被引:0
|
作者
Hocker, David [1 ]
Park, Il Memming [1 ]
机构
[1] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Generalized linear models (GLMs) are useful tools to capture the characteristic features of spiking neurons; however, the long-term prediction of an autoregressive GLM inferred through maximum likelihood (ML) can be subject to runway self-excitation. We explain here that this runaway excitation is a consequence of the one-step-ahead ML inference used in estimating the parameters of the GLM. Alternatively, inference techniques that incorporate the likelihood of spiking multiple steps ahead in the future can alleviate this instability. We formulate a multi-step log-likelihood (MSLL) as an alternative objective for fitting spiking data. We maximize MSLL to infer an autoregressive GLM for individual spiking neurons recorded from the lateral intraparietal (LIP) area of monkeys during a perceptual decision-making task. While ML inference is shown to produce a GLM with poor fits of the neuron's interspike intervals and autocorrelation, in addition to its runaway excitation, MSLL fit models show a substantial improvement in interval statistics and stable spiking.
引用
收藏
页码:613 / 616
页数:4
相关论文
共 50 条
  • [1] Bayesian inference for generalized linear models for spiking neurons
    Gerwinn, Sebastian
    Macke, Jakob H.
    Bethge, Matthias
    [J]. Frontiers in Computational Neuroscience, 2010, 4 (MAY):
  • [2] Bayesian inference for generalized linear models for spiking neurons
    Gerwinn, Sebastian
    Macke, Jakob H.
    Bethge, Matthias
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [3] Robust Inference in Generalized Linear Models
    Alqallaf, Fatemah
    Agostinelli, Claudio
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3053 - 3073
  • [4] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [5] Robust inference in generalized partially linear models
    Boente, Graciela
    Rodriguez, Daniela
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 2942 - 2966
  • [6] Robust and accurate inference for generalized linear models
    Lo, Serigne N.
    Ronchetti, Elvezio
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2126 - 2136
  • [7] Improved likelihood inference in generalized linear models
    Vargas, Tiago M.
    Ferrari, Silvia L. P.
    Lemonte, Artur J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 110 - 124
  • [8] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [9] NONPARAMETRIC INFERENCE IN GENERALIZED FUNCTIONAL LINEAR MODELS
    Shang, Zuofeng
    Cheng, Guang
    [J]. ANNALS OF STATISTICS, 2015, 43 (04): : 1742 - 1773
  • [10] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412