Scaling between periodic Anderson and Kondo lattice models

被引:5
|
作者
Dong, R. [1 ]
Otsuki, J. [2 ,3 ]
Savrasov, S. Y. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
GROUND-STATE; HUBBARD-MODEL; PHASE-DIAGRAM; APPROXIMATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevB.87.155106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N = 2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. DOI: 10.1103/PhysRevB.87.155106
引用
收藏
页数:8
相关论文
共 50 条
  • [31] CAN WE EXPECT THE METALLIC KONDO STATE FOR THE PERIODIC ANDERSON MODEL
    ZIELINSKI, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1980, 102 (02): : K85 - K88
  • [32] Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model
    Itai, K
    Fazekas, P
    PHYSICAL REVIEW B, 1996, 54 (02): : R752 - R755
  • [33] Antiferromagnetism and Kondo Screening in the Periodic Anderson Model: Variational Cluster Approach
    Horiuchi, S.
    Kudo, S.
    Shirakawa, T.
    Ohta, Y.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [34] The exact spectrum of Fermi quasiparticles in Kondo-Anderson ferromagnetic lattice
    S. G. Ovchinnikov
    L. Ye. Yakimov
    Physics of the Solid State, 2003, 45 : 1479 - 1483
  • [35] KONDO INSULATOR AND CHARGE-TRANSFER INSULATOR IN LATTICE ANDERSON MODEL
    ONO, Y
    MATSUURA, T
    KURODA, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (04) : 1406 - 1421
  • [36] The exact spectrum of Fermi quasiparticles in Kondo-Anderson ferromagnetic lattice
    Ovchinnikov, SG
    Yakimov, LY
    PHYSICS OF THE SOLID STATE, 2003, 45 (08) : 1479 - 1483
  • [37] Hidden Anderson localization in disorder-free Ising–Kondo lattice
    杨薇薇
    张欄
    郭雪明
    钟寅
    Chinese Physics B, 2020, 29 (10) : 522 - 529
  • [38] Underscreened Kondo lattice model versus underscreened Anderson lattice model: Application to uranium compounds
    Coqblin, B.
    Iglesias, J. R.
    Perkins, N. B.
    da R. Simoes, Acirete S.
    Thomas, Christopher
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 2961 - 2963
  • [39] Scaling properties of the Anderson model in the Kondo regime studied by σGσW formalism
    Spataru, Catalin D.
    PHYSICAL REVIEW B, 2010, 82 (19):
  • [40] Localized spin ordering in Kondo lattice models
    McCulloch, IP
    Juozapavicius, A
    Rosengren, A
    Gulacsi, M
    PHYSICAL REVIEW B, 2002, 65 (05) : 1 - 4