Scaling between periodic Anderson and Kondo lattice models

被引:5
|
作者
Dong, R. [1 ]
Otsuki, J. [2 ,3 ]
Savrasov, S. Y. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
GROUND-STATE; HUBBARD-MODEL; PHASE-DIAGRAM; APPROXIMATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevB.87.155106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N = 2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. DOI: 10.1103/PhysRevB.87.155106
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
    Cheng, Mengxing
    Chowdhury, Tathagata
    Mohammed, Aaron
    Ingersent, Kevin
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [22] Similarities between the Hubbard and periodic Anderson models at finite temperatures
    Held, K
    Huscroft, C
    Scalettar, RT
    McMahan, AK
    PHYSICAL REVIEW LETTERS, 2000, 85 (02) : 373 - 376
  • [23] Kondo insulators in the periodic Anderson model: a local moment approach
    Smith, VE
    Logan, DE
    Krishnamurthy, HR
    EUROPEAN PHYSICAL JOURNAL B, 2003, 32 (01): : 49 - 63
  • [24] Ferromagnetism and Kondo insulator behavior in the disordered periodic Anderson model
    Yu, Unjong
    Byczuk, Krzysztof
    Vollhardt, Dieter
    PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [25] Kondo insulators in the periodic Anderson model: a local moment approach
    V.E. Smith
    D.E. Logan
    H.R. Krishnamurthy
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 32 : 49 - 63
  • [26] Magnetic order and Kondo effect in the Anderson-lattice model
    Bernhard, B. H.
    Aguiar, C.
    Kogoutiouk, I.
    Coqblin, B.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : E76 - E78
  • [27] Quantum critical scaling and fluctuations in Kondo lattice materials
    Yang, Yi-feng
    Pines, David
    Lonzarich, Gilbert
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (24) : 6250 - 6255
  • [28] Critical Kondo Destruction in a Pseudogap Anderson Model: Scaling and Relaxational Dynamics
    Glossop, Matthew T.
    Kirchner, Stefan
    Pixley, J. H.
    Si, Qimiao
    PHYSICAL REVIEW LETTERS, 2011, 107 (07)
  • [29] COHERENT KONDO-LATTICE STATE AND THE CROSSOVER TRANSITIONS IN THE ANDERSON-LATTICE MODEL
    KAGA, H
    KUBO, H
    FUJIWARA, T
    PHYSICAL REVIEW B, 1988, 37 (01): : 341 - 355
  • [30] CORRELATION-EFFECTS IN THE PERIODIC ANDERSON LATTICE
    NIE, HQ
    WEI, GZ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1989, 78 (03) : 415 - 419