Scaling between periodic Anderson and Kondo lattice models

被引:5
|
作者
Dong, R. [1 ]
Otsuki, J. [2 ,3 ]
Savrasov, S. Y. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
GROUND-STATE; HUBBARD-MODEL; PHASE-DIAGRAM; APPROXIMATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevB.87.155106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N = 2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. DOI: 10.1103/PhysRevB.87.155106
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Emergence of electronic modes by doping Kondo insulators in the Kondo lattice and periodic Anderson models
    Kohno, Masanori
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [2] Exact mapping of periodic Anderson model to Kondo lattice model
    Sinjukow, P
    Nolting, W
    PHYSICAL REVIEW B, 2002, 65 (21) : 1 - 4
  • [3] Fermi surface reconstruction in the Kondo lattice model and the periodic Anderson model
    Watanabe, Hiroshi
    Ogata, Masao
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [4] Scaling the Kondo lattice
    Yang, Yi-feng
    Fisk, Zachary
    Lee, Han-Oh
    Thompson, J. D.
    Pines, David
    NATURE, 2008, 454 (7204) : 611 - 613
  • [5] Scaling the Kondo lattice
    Yi-feng Yang
    Zachary Fisk
    Han-Oh Lee
    J. D. Thompson
    David Pines
    Nature, 2008, 454 : 611 - 613
  • [6] UNIFORM ANDERSON SCALING IN THE KONDO PROBLEM
    MIRTSCHIN, AW
    LLOYD, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (30): : 5399 - 5410
  • [7] Kondo screening and exhaustion in the periodic Anderson model
    Meyer, D
    Nolting, W
    PHYSICAL REVIEW B, 2000, 61 (20) : 13465 - 13472
  • [8] Excitation spectra in periodic Anderson and Kondo lattices
    Maekawa, S.
    Tsutsui, K.
    Ohta, Y.
    Dagotto, E.
    Riera, J.
    PHYSICA B-CONDENSED MATTER, 1995, 206 : 147 - 150
  • [9] Strong-coupling limit of depleted Kondo- and Anderson-lattice models
    Irakli Titvinidze
    Andrej Schwabe
    Michael Potthoff
    The European Physical Journal B, 2015, 88
  • [10] Strong-coupling limit of depleted Kondo- and Anderson-lattice models
    Titvinidze, Irakli
    Schwabe, Andrej
    Potthoff, Michael
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (02):