Homogenization of fully overdamped Frenkel-Kontorova models

被引:31
|
作者
Forcadel, N. [2 ,3 ,4 ]
Imbert, C. [1 ]
Monneau, R. [2 ]
机构
[1] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
[2] Paris Est ENPC, CERMICS, F-77455 Marne La Vallee 2, France
[3] Ecole Polytech, CMAP INRIA Futurs, Projet Commands, F-91128 Palaiseau, France
[4] UMA, ENSTA, F-75739 Paris 15, France
关键词
Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Hull function; Cumulative distribution function; Slepcev formulation; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; DEVILS STAIRCASE;
D O I
10.1016/j.jde.2008.06.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fully overdamped Frenkel-Kontorova model. This is an infinite system of coupled first-order ODEs. Each ODE represents the microscopic evolution of one particle interacting with its neighbors and Submitted to a fixed periodic potential. After a proper rescaling, a macroscopic model describing the evolution of densities of particles is obtained. We get this homogenization result for a general class of Frenkel-Kontorova models. The proof is based on the construction of suitable hull functions in the framework of viscosity solutions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1057 / 1097
页数:41
相关论文
共 50 条
  • [21] Pinning and phonon localization in Frenkel-Kontorova models on quasiperiodic substrates
    van Erp, TS
    Fasolino, A
    Radulescu, O
    Janssen, T
    PHYSICAL REVIEW B, 1999, 60 (09): : 6522 - 6528
  • [22] Frenkel-Kontorova models, pinned particle configurations, and Burgers shocks
    Mungan, Muhittin
    Yolcu, Cem
    PHYSICAL REVIEW B, 2010, 81 (22):
  • [23] Emergent friction in two-dimensional Frenkel-Kontorova models
    Norell, Jesper
    Fasolino, Annalisa
    de Wijn, Astrid S.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [24] Sliding dynamics of the Frenkel-Kontorova model
    Strunz, T
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1995, 50 (12): : 1108 - 1112
  • [25] QUANTUM EFFECTS IN THE FRENKEL-KONTOROVA MODEL
    BORGONOVI, F
    GUARNERI, I
    SHEPELYANSKY, DL
    PHYSICAL REVIEW LETTERS, 1989, 63 (19) : 2010 - 2012
  • [26] FRENKEL-KONTOROVA MODEL WITH ANHARMONIC INTERACTIONS
    MILCHEV, A
    MAZZUCCHELLI, GM
    PHYSICAL REVIEW B, 1988, 38 (04): : 2808 - 2812
  • [27] Topological solitons in Frenkel-Kontorova chains
    Abronin, I. A.
    Kuznetsova, N. M.
    Mikheikin, I. D.
    Sakun, V. P.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 10 (02) : 203 - 210
  • [28] ON THE EXISTENCE OF SOLUTIONS FOR THE FRENKEL-KONTOROVA MODELS ON QUASI-CRYSTALS
    Du, Jianxing
    Su, Xifeng
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4177 - 4198
  • [29] The Transport Speed and Optimal Work in Pulsating Frenkel-Kontorova Models
    Rabar, Braslav
    Slijepcevic, Sinisa
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (02) : 399 - 423
  • [30] CROWDIONS USING THE FRENKEL-KONTOROVA MODEL
    KOEHLER, J
    PHYSICAL REVIEW B, 1978, 18 (10): : 5333 - 5339