Weighted Montgomery identity for the fractional integral of a function with respect to another function

被引:2
|
作者
Aljinovic, Andrea Aglic [1 ]
Krnic, Mario [1 ]
Pecaric, Josip [2 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
关键词
Fractional integral; Montgomery identity; Ostrowski inequality;
D O I
10.1515/gmj-2014-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a weighted Montgomery identity for the fractional integral of a function f with respect to another function g and use it to obtain weighted Ostrowski type inequalities for fractional integrals involving functions whose first derivatives belong to L (p) spaces. These inequalities are generally sharp in case p > 1 and best possible in case p = 1. Applications for the Hadamard fractional integrals are given.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Non-Instantaneous Impulsive Boundary Value Problems Containing Caputo Fractional Derivative of a Function with Respect to Another Function and Riemann-Stieltjes Fractional Integral Boundary Conditions
    Asawasamrit, Suphawat
    Thadang, Yasintorn
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AXIOMS, 2021, 10 (03)
  • [42] On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function
    Laadjal, Zaid
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (01): : 1273 - 1292
  • [43] Estimates of the difference between two weighted integral means via weighted Montgomery identity
    Aljinovic, AA
    Pecaric, J
    Peric, I
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (03): : 315 - 336
  • [44] Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function
    Zhou, Shuang-Shuang
    Rashid, Saima
    Rauf, Asia
    Jarad, Fahd
    Hamed, Y. S.
    Abualnaja, Khadijah M.
    AIMS MATHEMATICS, 2021, 6 (08): : 8001 - 8029
  • [45] Quantum calculus with respect to another function
    Kamsrisuk, Nattapong
    Passary, Donny
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2024, 9 (04): : 10446 - 10461
  • [46] Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function
    Baleanu, Dumitru
    Samraiz, Muhammad
    Perveen, Zahida
    Iqbal, Sajid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    AIMS MATHEMATICS, 2021, 6 (05): : 4280 - 4295
  • [47] New Multiplicity Results for a Boundary Value Problem Involving a ψ-Caputo Fractional Derivative of a Function with Respect to Another Function
    Li, Yankai
    Li, Dongping
    Chen, Fangqi
    Liu, Xiangjing
    FRACTAL AND FRACTIONAL, 2024, 8 (06)
  • [48] A MEAN REFINEMENT INTEGRAL OF A FUNCTION WITH RESPECT TO A FUNCTION PAIR
    PRIEST, DB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 319 - &
  • [49] Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function
    Yang, Yitao
    Ji, Dehong
    AIMS MATHEMATICS, 2020, 5 (06): : 7359 - 7371
  • [50] Fractional Hermite-Hadamard-Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Kashuri, Artion
    SYMMETRY-BASEL, 2020, 12 (09):